§30. High-energy Proton Tail Formation at $R_{a x}=3.6 \mathrm{~m}$ and 3.75 m

Sasao, M., Isobe, M., Saito, K., Kumazawa, R., Seki, T., Krasilnikov, A.V. (Troitsk Inst. for Inn. \& Fusion Res.)

It has been experimentally shown that excellent energy confinement property is obtained in the inward shifted configuration ($\mathrm{R}_{\mathrm{ax}}=3.6 \mathrm{~m}$), in spite of the enhanced magnetic hill structure compared with that of the standard configuration $\left(\mathrm{R}_{\mathrm{ax}}=3.75 \mathrm{~m}\right)$. This is mainly considered due to improvement of neoclassical transport and high-energy particle confinement.

Fast ion behavior have been studied by measuring the high energy neutral particle spectra during minority ICRF heating [1], and their relaxation after the ICRF termination [2], by using natural diamond detectors [1]. The measurements of the 1999 campaign show that acceleration and slowing down of perpendicular particles behaved classically, and the orbit loss was not observed
(a) $R_{a x}=3.6 \mathrm{~m}$

(b) $\mathrm{R}_{\mathrm{ax}}=3.75 \mathrm{~m}$

Fig. 1. Poloidal cross sections of LHD magnetic closed surfaces at $\mathrm{R}_{\mathrm{ax}}=3.6 \mathrm{~m}$ (a) and $\mathrm{R}_{\mathrm{ax}}=3.75 \mathrm{~m}$ (b), together with cyclotron resonance surfaces of 38.47 MHz and 40.47 MHz . Dashed lines show two vertical observation chords.
in the inward shifted configuration $\left(\mathrm{R}_{\mathrm{ax}}=3.6 \mathrm{~m}\right)$ in the density range of $n_{e}<10^{19} / \mathrm{m}^{3}$.

In the $4^{\text {th }}$ campaign, two vertical observation chords were prepared, one at $R \simeq 3.65 \mathrm{~m}$ and one at $\mathrm{R} \simeq 3.9 \mathrm{~m}$ as shown in Fig. 1. ICRF of $38.47 \mathrm{MHz}(1.8-2.3 \mathrm{~s})$ and $40 \mathrm{MHz}(2.8-3.3 \mathrm{~s})$ was applied to an NBI-sustained plasma. In Fig. 2 are shown the time evolution of high-energy proton temperature. Stix parameter dependence of the central chord shows little difference between two cases $\left(\mathrm{R}_{\mathrm{ax}}=3.6 \mathrm{~m}, 3.75 \mathrm{~m}\right)$, but some differences were seen in the outer chord spectra, showing the orbit effect.

Reference

[1] A. V. Krasilnikov, M. Sasao, M. Isobe, et al., submitted to Nuclea Fusion(2001).
[2] M.Sasao, S.Murakami, M.Isobe, A.V.Krasilnikov, et.al. 18 IAEA
Fusion Energy Conf. (Sorento, October 2000), IAEA-CN-77/EX9/1

Fig. 2 Time evolution of $T_{\text {eff }}$ at $R_{a x}=3.6 \mathrm{~m}$ (upper two) and 3.75 m (lower two).

