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Lagrangian neoclassical transport theory applied to the region
near the magnetic axis
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(Received 1 May 2002; accepted 19 June 2002

Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively
wide “potato” orbits play an important role in transport. Lagrangian formulation of transport theory,
which has been investigated to reflect finiteness of guiding-center orbit widths to transport
equations, is developed in order to analyze neoclassical transport near the axis for a
low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised
to retain momentum conservation property of it. By directly reflecting the orbital properties of all
the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease
from that predicted by conventional neoclassical theory. This result supports recent numerical
simulations which show the reduction of thermal conductivity near the magnetic ax&00@
American Institute of Physics[DOI: 10.1063/1.1499952

I. INTRODUCTION along a collisionless particle orbit in a tokamak. The previ-
ous works proved that Lagrangian formulation can reproduce
Recently, neoclassical transport in the core region of tothe results obtained from the standard Eulerian formulation
kamaks has again attracted much attention. It is well-knowmuilt in the SOW limit.
that there appear nonstandard guiding-center orbits near the The present article is the first application of Lagrangian
magnetic axis called “potato” orbitsThe typical orbit width  formulation to the near-axis region in which the finite-orbit-
of potato particles is as large ag?p?Ry) 3, whereq is the  width (FOW) effect becomes really important. To utilize La-
safety factor,p is the Larmor radius, an®, is the major grangian transport theory, we improve the treatment of the
radius, respectively. In recent tokamak experiments irike-particle collision term in the formulation to retain the
reversed-shear configuration accompanied by the internahomentum conservation property. In contrast to the other
transport barrie(ITB), the measured ion thermal conductivi- calculations using some analytical approximations, our cal-
ties in the core region sometimes become lower than thoseulation reflects quantitatively the properties of all types of
predicted by a conventional neoclassical transport thebdry. particles appearing near the magnetic axis. It is found that
In fact, the standard neoclassical transport thtdrgon-  the ion thermal conductivityy; obtained by Lagrangian
structed in the small-orbit-widttSOW) approximation is not  transport theory becomes significantly lower than that pre-
applicable to the near-axis region, and the orbital propertiedicted by conventional Eulerian theory. Our result supports
of potato particles should be considered in analyzing transthe recent results of both Monte Carlo simulations and ex-
port in this region. Then, several transport theories have begperiments in the core region.
presented to include the effect of potato partiCesand In Sec. I, analysis of guiding-center orbit is reviewed,
Monte Carlo simulationgthe so-called theSf-method®~'®  and the classification of orbit types in the COM space is
have also been carried out to calculate the ion thermal corpresented. The reduced kinetic equation and collision opera-
ductivity y; in the near-axis region. However, there existtor in the COM space are derived in Sec. lll, and the trans-
differences in the resultani’s depending on the model used port equation is obtained by solving the kinetic equation in
in analytical calculations, and neoclassical transport theorypec. 1V. We also discuss how to compare the neoclassical
in the near-axis region is not completed yet. flux between Lagrangian and Eulerian representations.
Neoclassical transport theory has usually been discussetansport coefficients, especially the ion thermal conductiv-
in Eulerian representation. The extension of the theory to théy in the near-axis region, is calculated in Sec. V.
near-axis region has also been discussed in an Eulerian man-
ner. However, to include orbital properties in the transport
theory, Lagrangian formulatidf‘®was found to be suitable !l PARTICLE ORBIT NEAR THE MAGNETIC AXIS
fora collisionIess(banana-reginjqalasma. In this appr_oac_h, _ As pointed out in recent work:!® the guiding-center
transport phenomena are described by a reduced drift-kinetigpit near the magnetic axis is not as simple as in conven-
equation in the space of three constants-of-moti@®M)  tjona| analysis, in which particle orbit has been classified as
“passing” or “banana.” Let us explain key points in analyz-
3Electronic mail: satake@nifs.ac.jp ing the orbit here.
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TABLE I. Classification of particle orbits. 0.2 T T T T
Orbit type oy, o5 Sign of oy
Passing 0,0 + or —
Banana 2,2 * 0.1 ]
Outer-circulating 0,2 +P ;
Inner-circulating 0,2 —b
Kidney 2,0 * v4 (m)
Concave-kidney 2,4 + 0.0k ]
aNumbers of turning points.
bFor ions. The sign is opposite for electrons.

-0.1 .

Consider a guiding-center motion projected on the poloi-

dal cross sectionr(#) of a tokamak. The magnetic field 02t i
strength is given aB=By[1— (r/Rg)cosd] and q value is L L 1
assumed to be constant. The guiding-center velocity of a 3.9 4.0 4.1 4.2 4.3
particle is expressed as=v b+ vy, whereb=B/B andvy is R (m)

the drift velocity in the direction across the magnetic field

lines. To investigate orbit topology, the poIoidaI angu|ar ve-FIG. 1. Examples of particle orbits f&=10 keV ions in the model field
Bo=4T andqg=3. The circle and bar marks represent turning points of the

locity 6 is considered. In the loy approximation, it is signso, and o, respectively. Orbit types are A: standard banana, B: the

given by fattest banana, C: passing, D: inner-circulating, and E: outer-circulating,
respectively.
2
. 1 q 5 Ul
0:(Uub+Vd)'V0:_ U”__Q U”+— cosé|, . . . . .
aRy rido 2 in Figs. 3 and 4. For the convenience of notation, we intro-

oy duce a typical small radius

whereQo=eBy/R,. One can see that the contribution of the  r,=2(2g%p7%R0)*?, ©)

second term, which arises fromy-V 6, is proportional to . . .
"y prop wherep;o=uvi /g is the Larmor radius of thermal ions. In

r~* and then it becomes significant when a particle is @Pnis article, we use “potato particles” to describe those which
proaching the magnetic axis. This fact means that orbit to- ’ > potato partici )
appear 6<r <r, with their orbit width beingA, ~r .

pology cannot be classified in the usual way by counting One of the important features in Figs. 3 and 4 is that

only the turning points ob;. We have showif that the there are some overlaps in the regions of orbit types around
proper way of classifying orbits is to count both the turnlngthe solid-line part of the boundaty. In overlapped regions,

points of gy =v,/|v)| and o= i9/|{9|_along a particle orbit. ;0 particle orbit cannot be identified only by the value
The criterion of classifying orbit types is shown in Table (&,1,(r);0). Therefore, the criterion in Table | should be
[, and examples of orbits are shown in Figs. 1 and 2. Here dopted to identify orbits

we use some new names of orbit types which are characte?fl-
istic of the near-axis region. Outer-, and inner-circulating
particles are localized on either side of the magnetic axis, T T T T
though they do not change, like passing particles. Kidney 0.2 i
orbits'® encircle the axis, though they are trapped in the mag-
netic mirror like bananas. We distinguish a concave-kidney
orbit from a kidney orbit, according to the turning points 0.1
of ay.

Such a detailed classification as above is needed to iden-Z (M)
tify particle orbit in the €, u,(r)) space, in which we will
discuss Lagrangian formulation. Heigjs the energyu is 0.0
the magnetic moment, add) is the radial position averaged
over one poloidal period, which is defined by E). The
region of each orbit type in the(i(},\y) plane for & -0.1
=10 keV hydrogen ions is shown in Figs. 3 and 4. Here,
No=uBy/& is the normalized magnetic moment. The circle

in Fig. 3 corresponds to the fattest banana debih Fig. 1, 0.2} i
the width of which is 2(2%p?R,)*%, wherep=v/Q,. Po- ' , i . .

tato orbits, of which typical width becomesA, 3.8 4.0 4.2
~(9%p?Ry) Y3, correspond to those appearing around R (m)

(< r > No)~ ((QZPZRO) 1/37 1+ (gp/Ry) 1/3) 2 FIG. 2. Examples of kidneyF) and concave-kidne{G) orbits.
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FIG. 3. The regions and the boundaries for each types of orbit in the
({r),\o) plane for€=10 keV ions. Orbit types are abbreviated as B: ba-
nana, P-: copassing, P : counterpassing, OC: outer-circulating, IC: inner-
circulating, respectively. The solid-line part I&f up to the triangle mark is
the transition boundary. The boundarigls and the dotted-line part d2
correspond to zero-width outer-circulating and inner-circulating orbits, re-
spectively.I3 is the boundary between the kidney and copassing regions.

Satake, Okamoto, and Sugama

The circle mark corresponds to the fattest banana orbit.

As it is approachingd2, a banang&concave-kidneyorbit
bifurcates into a kidney and a counterpassifigner-
circulating orbit, as shown in Fig. 5. Such barely transi
particles are almost stagnated etd) = ({(r), ). We call the
solid-line part of12 “the transition boundary” hereafter.

FIG. 5. Transition in orbit typega) A banana orbit changes into a kidney or
a counterpassing orbit according to the position on which the transition
occurs.(b) Similarly, a concave kidney changes into a kidney or an inner-

t circulating orbit.

There is an other type of stagnated particles that appear d¥curs Wh_ené becomes zero on the=0 plane, and stag-
the boundaryl1. They are outer-circulating particles stag- nated particles have finite,. Note that on the dashed-line

nated at (,6)=((r),0) and they move only in the toroidal

part of 12 (the left side from the triangle mark in Fig),3

direction. Conventionally, such particles have been regardefifurcation of orbit types does not occur. This boundary cor-

as banana particles in the limif=0, but in fact stagnation

FIG. 4. Regions of K: kidneyshadeg@l and CK: concave-kidneyenclosed

by solid lines orbits. The kidney region overlaps with the banana, copass-

responds to inner-circulating orbits with zero width like
outer-circulating particles dtL.

One advantage in using(u,(r) (or {¢))) as a set of
COM variables is that, in the collisionless limit, the position-
like variable {r) changes continuously when crossing the
transition boundary. This is because, as mentioned alve,
becomes zero as a particle approaches the transition bound-
ary |2, and then the averaged position of such a transit par-
ticle corresponds to the stagnation pointf) = ({r), ). On
the other handy, used in Ref. 15, which is the minor radius
of one of two crossing points of orbit with thé=0 plane,
changes discontinuously at the transition boundary. It is also
practical to choosér) as the position-like variable in that
(r) is the most suitable value to represent the lowest-order
approximation of the particle position.

Finiteness of orbit width appears on the region of each
orbit type. In the zero-width limit, banana particles exist in
the range (e)<\y<1+(e), where(e)=(r)/Rq. In real-
ity, however, this simple analysis is not valid for the region
0<(r)=r, in which potato orbits appear. Moreover, because
of the finiteness of the orbit width, no particles exist g}

ing, and concave-kidney regions. A part of the concave-kidney region overdp. The existence of outer- and inner-circulating particles

laps with the copassing region.

can be found only if the finiteness of orbit width is consid-



Phys. Plasmas, Vol. 9, No. 9, September 2002 Lagrangian neoclassical transport theory . . . 3949

ered, and they have not been treated in the conventional neorbit. Note also that we can ugg=(r) instead of ) when

classical transport theory, nor in the recent studies treating is convenient. By using the set of variables?), Eq.(5) is

the near-axis region. However, they will affect transporttransformed into

around the axis because some of them have large orbit width of

A~y _ _ - —fa(z 0.0+ 0(9—;=Cab, (8)
In the forthcoming sections, we will derive the Lagrang-

ian formulation of neoclassical transport theory which canwhere the property/d¢=3d/d;=0 is used.

include the orbit properties near the magnetic axis discussed We introduce here an ordering paramefgras

here.

8=y <1, 9
where vﬁﬁ is a typical collision frequency. This assumption
IIl. KINETIC EQUATION IN LAGRANGIAN corresponds to the condition that the plasma is in the colli-
FORMULATION sionless regime, or the banana regime. In @g. 4f/dt and

C,p are assumed to be(5.), so that the variables
(& p,{¥)) can really be the constants of motion through the
Consider an axisymmetric configuration. We use thelowest order iné.. Expandingf, with &, the lowest part

magnetic coordinate syste(w,6,(), wherey, 6, { is the po- becomes

loidal flux, the poloidal angle, and the toroidal angle, respec- if

tively. The electromagnetic field is representedBas|V ¢ —=0, (10)
+V{XV¢ and E=-VO(y), wherel=RB, and we as- 96

sume that the field is time independent. Three constants afhere we omit the subscript. On the other hand, from the

A. Reduction of the kinetic equation

motion in an axisymmetric configuration are conservation of volume in the phase space, one has
2 2
Mav Mav 19 dz\ 1 ¢ dz
8=aT+eacI>=%+,uB+eaCI>, (4a __.(JZ_)+__. ‘]Z_):Q (11)
J, 0z dt) J, 7 dt
B mav? b where J,(z,0) is the Jacobian of the transformx,()
K=p (b _,(2%). Sincedz/dt=0 to O(s2), one obtains
m,R? 32161 =3o(&, (1)), (12
sz 1,0— Z V-Vg, (4C) z| | 0 < >
a fo=Tfo(&m.(¥)). (13

wherev,=v-b, v, =|v—uvb|, and the subscripa denotes Next, by using Eq(11), O(&%) part of Eq.(8) can be
particle species. The starting point of Lagrangian formulation, iitten as

of neoclassical transport theory is the drift-kinetic equation

in an Eulerian representation in the,&, ) space 9 1o do )\ 19 [ oz
ath(Z’t)+JZa0 g J, 0z gy T ], (14
P o,
ZfaX &) +X- == =Cap, (3 where the right-hand side is derived from the fact that the

. collision term can be written in the divergence form in the
where =d/dt, x is the guiding-center position, alth, isa  velocity spaceC(f )=V,-I'(f). The last procedure is to take
collision operator. Note that Ed5) is independent of the the orbit average of Eq14). It yields
gyrophasep. We change the independent variables in Gg. _
into three constants of motion in the collisionless limit ~ Jf 1 ¢ (J Jz
(z1,2,,23), and the other three variableg,(Z5,Zs). One ot Jeaz \ "¢\ av
can choose an arbitrary set of independent variald@&.(In — ) . —. .
this paper, we choose&Z{Zs 7s)=(6,(,4), while z,=¢, where f=f; is used to emphasize thétis a function of
2=, andzg=(4) instead ofP,. () represents the aver- (&m(¥).1), and
aged radial position of a particle orbit. The orbit average Jc(g,ﬂ,<,/,))z4772307-p (16)
operator for any functiom(z,Z) is defined as

=C, (15)

~F(f_>>

is the Jacobian in theg(u,{)) space. The collision term is

1 de 5 also averaged over a particle orbit. Thus, we obtain a reduced
(a)= P é ?dé“ dea(z?), (6)  drift-kinetic equation in the § u,(1)) space.
p
where
do B. Jacobian
Tp= 7 (7) Here, we derive the explicit form of the Jacobidp

defined in Eq.(16). First, consider the transform from Car-
is the poloidal period of an particle orbit. Note that the inte-tesian coordinate syste(r,v) to the guiding-center variables
gral is carried out along one poloidal circuit of the particle (¢,6,(,E,u,¢). The Jacobian of the transfornfis
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1 B,

T (B-VO) miy|’

whereB, =B[1+ (v, /Q)b-VXb]. By changingy to its or-

bit averaged valué), we obtain the set of variableg,?)
=&, {h),0,L,0). Therefore, the Jacobialy can be writ-

17

ten asJ,=J|dy/ (). To determinel,, we use the conser-

vation of P, (of its gyro-averaged forjn

v =const. (18

I

Taking the orbit average of both sides, it becomes

I
QU|:<¢>_<§U>- (19
Differentiating both sides by), we have
a1 Y a |1
“aolael g wplan) e

Note that all partial derivatives in E¢R0) are taken withS,

Satake, Okamoto, and Sugama

Though we retain the term-14, in the derivation of trans-
port equation hereafter, it is approximated to be unity in the
numerical calculations.

An important property of; arises from the factor, for
particles which are stagnated on the 0 plane. Remember
that there are two types of stagnated orbit. One type is the
outer-circulating orbit stagnated at/(6) = ({¢),0) (on the
I1 boundary in Fig. B and the other is the stagnated orbit at
(¢,0)=({¢),7) (on the transition boundah?). Approach-
ing thel1l boundary, orbits resemble a pendulum motion in
the Z direction with a infinitesimal oscillation. Therefore,
remains finite onl1. On the other hands,— when ap-
proaching thd 2 boundary. Then, we have

lim J.=finite, (27a
pu—I11
lim J,= . (27b)
u—12

We have shown that, in thé&,u.(#)) space, there are

some overlaps in regions of orbit types. Thég(z) andf_(z)
are generally multivalued functions af depending on the

wm, and @ being kept constant. Next, by using the equation oforbit types. We introduce the sigm, to indicate the orbit

guiding-center motio® one obtains

o V . U”B'Va J I 21
O0=v-Vo= B* &l,// UH ( )
Then, combining Eq17), (20), and(21) yields
J,=——|1-6,/|, (22
m?| 6]
where
O, = i | 23
A 9

Thus, one can confirm thdt| 6| =J, in Eq. (12) is indepen-
dent of . Finally, combining Eqs(16) and(22), we obtain
the Jacobian in théS,u.(¥)) space

4772
‘]C:WTD|1_5*|' (24)
In a numerical calculation, the poloidal periag can
easily be determined. As conceris , it should be noted
that, from Eq.(19)
IUH

)

(29

(), 6%)

where (4, 0) = ({),6*) is the position at which a particle

crosses its averaged flux surfage=(). We call it “the
averaging point” of an orbit. Then, E@23) is interpreted as

a6*

((9 )Iv
%=\30 " 3ty 70 : (26)

(), 0%)

where d6* /() represents the displacement of the averag-
ing point. Fortunately, however, we can estimate that 1

type of each particle. The notatiai(z) andf_(z) implicitly
means that they also depend ep;, J.=J.(z 0¢), etc.

C. Collision operator

To obtain transport equations in thé& u,(i)) space, we
need to evaluate the change rate of COM by collisions. First,
consider the collision term in Eulerian representatton

9ta(v)
ov

fp(v')

Cab: Kab& f dgl), U(v— )

afb(V )

- _fa( v) ; (28)

where

A%

I

e2e?ln A
a8 reZm?

Substituting Eq(28) into the averaging operator E@®),
we obtain the exact description of the orbit-averaged colli-
sion ternt®

Cuee 23| AT+ D 27 29
ab_J_Ca_Z' \]c a(z)+ (9_2 a(z) ’ ( )
where

A—Kmaazfoﬁ'u ' aT'

= Kavp\ oy v U(v V)'W n(Z') ),
(30a

9z 9z
D= Kab< fd3v’f (Z)U(v—Vv")- ﬁv>. (30D

-8, =1 for almost all particles as shown in Appendix A. Note thatz’ in Eq. (30) is a functional depending oé
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2= uw (W) )= (E ' () + P (2. 1’ ,0)), C-(f-):ﬂi. ( Vv _f _mu.qu.M>
2 ov T !

2|_

: (37)

wherey’ arises from the finiteness of particle orbit width. In )
this sense, the averaged collision term E2§) has a nonlo-  WhereV(v)=v“l—wv ar_1d_w=u2b—u”v. SinceV-v=0 and
cality. Moreover, since Eq29) is a integro-differential func- W- V=0, the model collision operator E(87) also conserves
tion, it is not suitable for solving analytically. Therefore, we Particle number and energy.

need some approximation to handle the collision operator in  Finally, by taking the orbit average of E(87), we ob-

Lagrangian formulation. tain the orbit-averaged model collision operator
From here on, we consider only the ion transport be-
Co T —— 19 vi(Ci () of,
cause the FOW effect near the magnetic axis is important for  C;(f,)= 3.7 de———— — V
ions. We neglect the ion—electron ter@,, since it is Iz v v oz
smaller than the ion—ion ter@; by a factorymg/m;. An miu;, 9z
easy approximation for the collision term is the Lorentz op- <?' &V > (38

erator, which had been used in the fundamental study of
Lagrangian formulation by Bernstein and Moligput it ~ We neglect here the variation of along an ion orbit be-
does not conserve momentum. It is well-known that the mocause, though typical ion orbit width becomes as large as
mentum conservation property of like-species collisionsA,~r , there, experiments show that density and temperature
plays an important role in transport theory. Therefore, we us@rofiles near the axis are flat. Note also that we neglect the
here a model collision operator which conserves the paralletariation of v along a particle orbit in averaged collision
momentum locally so that the transport equation may reproterms. To ensure this approximation, it it assumed that

duce the result obtained from Eulerian formulation in the

SOW limit. E>|Ae ﬂ , (39)
The model collision operator is given in the following d(r)
form?? andv is evaluated as
gy i J 2 &f mivuuiuf 2
Ci(f)=7 = (=w). — i+ViT M, (31) v="\lE-eP(¢))]. (40)
1
whereu;, is a functional off;, andf;,, is a local Maxwell- In Eg.(38), we need to evaluatéz/ dv. It is immediately
ian. Collision frequency; is defined as shown that
3w 9 _
M= Y () (32 Py
wherec;=v/vy,; and op _mv,
4 ov B
_, nizie'inA . : -
Ly s s (338  We also need the expression &fyy)/dv. This factor is im-
€M Uthi portant in Lagrangian formulation, because it measures the
1 1 rate of excursion in average radial position of a particle by
y(c)= ( 1- p)‘l’(c)-i— 2—\P’(c), (33b) scattering in the velocity spacé )/ dv can be obtained by
¢ ¢ taking partial derivative on both sides of Hd.9). It gives
oy) 1 9 [l
P(c)= \/_f dx e * (330 W——5b+w<ﬁ
Here,u;, is determined to conserve the parallel momentum I—b+ 93 du d ) 9 'Un (@)
Q N OE N du v Ay
f d® v Ci(f)=0. (34) In a previous worK? this factor is treated approximately as a
step function
Then, substituting Eq.31) into this equation yields ) |
T , v ﬁb (banang,
“i_mj Forofi, 39 ) (42)
where WZO (passing,

o 5 in the SOW limit. However, the estimation above needs
Kn= fo dce “cy(c). (380 some explanations. Note thaty)/dv can be decomposed as
a,v+ayb. SinceV-v=w-v=0, we need to retain only the
It is convenient to rewrite Eq(31) in the divergence component of the derivative. Noting Eq23) and (25), we
form, by notingdfy, /ov=—(mv/T)f, obtain
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ayy |
(1=6,)—, =~ q1-AdJb, (43
where
A _ eUH J IU” a4

For the convenience of notation, we introduce a fagtas
follows:

d |
%= —¥(z,0;0,) =b.

a (45)

Later, it is shown that we do not need the explicit form

Satake, Okamoto, and Sugama

_ dy

Ni=av

Ni{@)Na(()), (50

=)

whereV is the volume enclosed by #= const surface. The
numerical factom, is given by

dv(2=T;\%?
m

(€ >)—

_ei(D

X 2 dfd/LJcexr{—
ot

-

(51

of A; to calculate transport coefficients, as pointed out inf (y) is away from the magnetic axis and the orbit width is

Ref. 14 and the estimation in E¢42) works well in the
SOW limit.

IV. NEOCLASSICAL FLUXES
A. Derivation of transport equation

We now expand the reduced kinetic equati@s) by a
small ordering parameter

A,
5bE _<1,

. (46)

whereA, is a typical orbit width and_ is a typical gradient
scale length of plasma pressure. Thodgtfor ions becomes
large in the near-axis region, the conditi@¥6) can be satis-
fied sincelL also becomes large there.

The ordering we put in Eq.15) is as follows.df/dt is
assumed to b@(é) often called “transport ordering.” For
the parallel flow, we use a plausible ordering tgt/v
~0O(6y). Concerning partial derivatives/dz, d/d&, and
dl o are treated a®(5p), while 9/d(1)~0(8y). The col-
lision operator is then expanded & asC= CcO+s5,c)

+62CP)- -+ With the expansiori = fo+ Spf + 82+, the
0(50) part of Eq.(15) for ion becomes
1 9 Jevi|/opw  au\ dfig
(0) - ! Ly
Ci(fio) Jedu 2 <av v av> i 0. (47

Because {&/9v) - V=0, only theu derivative appears in Eq.

(47). Then, any distribution functiofi;, independent of is

the solution of this equation. However, we adopt here the
averaged collision operator of its exact form shown in Eq.

(29) for C{?. Then, the solution of;, becomes the local
Maxwellian®

— [ m ¥ E-gd
o=l gr &~
I I

wheren;, T;, and® are defined as functions /).

, (48)

The definition ofn; is not equal to the flux-surface av-
eraged density; (). First, consider the particle number per

unit () as follows:

dEdu Ictio(E& ()i 0y). (49)

Ni(<w>>=;

Then,n;({¢)) is defined as

narrow, A\,—1 and n;({¢))=n;(¢)). When approaching
()—0, however)\n becomes large because the integral re-
gion in the(&,u) plane is small there. Note thaf, is nearly
proportional to)\gl near the axis, assuming that the density
profile in the real space is flat in the ranger,. This as-
sumption is valid when considering the core region with
ITB. Then, it is a simple and plausible assumption that

n;(())=n;(¥=(4)), even in the near-axis region.

Before proceeding to th@(&%) equation, let us consider
the order expansion of the momentum-restoring term in Eq.
(39). Sinceu;, andf; vary along a particle orbit, we expand
it as

Ui fim E' BoU
Ti (4,6,v) B IOT (<l//>

)_lo(Z +Ay(2,0)Fi0(2).
(52

Here,u;;((#)) is the lowest-order approximation af, cho-
sen properly so thai, becomes{)(ﬁﬁ). The reason why we
expand it in this way is an analogy with the fact that the
neoclassical flux in the radial direction, in Eulerian represen-
tation, is proportional not to(u;),, but to (lu;/B),,>
where(---P),, means the flux-surface average. Then, substi-
tuting Eq.(52) into Eq. (38) yields

il oz azZ\ of;
o ov| oz

(53

Now consider theO((S) equation of kinetic equation
CcO(f,;)=—CW(f), or written explicitly

Vi 3 mvf\ fiy
J (9 ot B e
__nd 3 Iy dfio +miQi0u_iH Iy, T
J (9,“ cM QiUH (9<¢> IOTi Qi iol-

(54

To solve Eq.(54) for f;;, it is rewritten in terms of driving
forcesF, as
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£ 3 Jda
()= J'Ok; (9—Mk, (55)
where
e _dlnﬁi+ei do (569
Yd{y) Ty’
dinT,;
LU (560)
d{¢)
_miQioU_iu (560
STTLT,
and
|
al——vai,u<év“>, (57®
3 |
a’2:_(ci2_§)‘]cvi#<év>! (57b

(9?0 - ~Q)/f af 9 !
a_t':a(2>(fio)+ci(1)(fi1) CO(fip) e atl Je ﬁ(lﬂ)J )
14 ly \ ofi fm o\ afis
—J—C@JCVW« < U> (9<1I//> <_'U2> a' +mi(v A

By taking a moment with€ and u, we obtain the particle
transport equation in th@y) direction

/\/I +— P ( l//) =0, (61)
where the particle fluxl'1 is given as
3
:k; (SSK+SIOF . (62

An important point is that the transport coefficients are sepa- ¢

rated into the explicit and implicit partsSy and Sjy,
respectively* They are given as follows:
w1\ —
S‘a:_(%a<§i)’2>,fi0], (639
ml 3\—
S%_ Vi e <Q| 72> v( C|2_ E) flO}r (63b)
p12y\ —
Sya= Via<?i>ifio]i (639
m_ | % 9%
1k [‘JC 1 &M 1 (63d)
where the inner product is defined ada,b}

=3, Jdgdud.ab.
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| UH
—Jevip QI
Introducing the perturbed distribution functionR(&, ,(¥))
which satisfies

(579

Jda
~(0) _ |O k
Ci(gw= 3. n (58
f,, can be expressed as
3
filzgl 9kFk- (59

Thus, the first-order equation is found to have a similar form
to that by Bernsteiret al,* though we successfully include
the momentum-restoring term by introducing an additional
driving forceFj.

Next, considelO(52) part of the reduced kinetic equa-

tion

leoUn\ |27T+ Iy e-@
|0T Qi i0 inH Iﬂ,LL

(60)

< 2 > (7f|0
R

To obtain the energy transport equation, the moment to
be taken isfd€du JW, whereW=E—¢ed({¢)). Define
here

Q=2 | dfdp I W,

Tt

(64)

which is the sum of the kinetic energy of particles with the
same(y). The use of partial integrals yields the energy
transport equation

3 ; do
_Qi (9(4/;) 2+ JiTil= e‘]ld(zp) (65)
whereJ,, represents the conductive ion heat flux
| 3
f 2, (Shct SOF, (66)
where
12 3\—
S _[Vi§i<—i72>a(c.2— E)ﬁo]a (679
12 3|2
So= [Vi§i<_i')’2>,(c.2_ 5) fio], (67b
N L AN 1T
$3_ Vigi ﬁl ’ Ci _E f'|O 3 (670)
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- a2 (?gk This equation is symmetric ifi and k; therefore, implicit
13 o (670 coefficients are symmetric.

The right-hand side of E465) d i Kd by th One can also find that the explicit part has a symmetry
radeiarll?on-ci?rer?': e of Eq65) describes work done by the 5=S5:. Then, it is natural to seek the third flux which

satisfies the symmetrg5;= S5
B. Properties of transport coefficients

An important property of the transport coefficie8g is

3
the symmetry of the implicit parfS”"—Sk This can be :E Y (70
shown by as follows. First, integrating both sides of Ex9) & 53" ke
by u yields
J mo| a9; 68
aj= T ? Ma (68) Now, we show that the proper definition of the third flux is
i0
where the integral constant is zero from the boundary condi-
tion. Then, one obtains .
| = 2niky <Ii> d_V (71
. 3= ] du-
w=2 fdngaJ o n T
Ip
2
v, [ Mu ag; d
-5 [ astua < ">M&&. ®
ot fo\ B ou du Noting that(- --) , means the flux-surface average, we have
|
Ji=4 ZFW v Ifdg’d’ (vt
AT | BVe O Hgor oty
¥=(u)
_am fzw fdg'd rdy’ 6 B, f,
_m_i2 0 BVQQ M l// (<¢'> ‘//)O-H *I& /(V|M)
— 477 fz’” fdg/ /d !B ! (7 f
__m_i2 o BVBQ <¢> (9<¢>0'H *Vi'u(?_,u,'i'
Next, the distribution function is expanded as
ofi 9 |— — ly ofip  dfiy
fio—A +fy|l=— 7+ — 72
o ol O wﬁ(@ ey oy 72
where
=)= <'i> 73
b= Q,

represents the deviation from an instantaneous particle position to its averaged flux surface, and we use the relation
a(p)lov=—09A,lov. Using Egs.(20) and(21), and changing the order of integrals, we have

v 127\ oo o)) ot
e \ Q) dyy T\ Maﬂ .

Note here that the implicit coefficientS}, are written as Then, comparing Eqq74) and(75), one finds that the ex-
follows, by definition: plicit coefficients forJ; are given as follows:

(74)

472r
p
—;t dédu—;

im__ o (99 I ag ex |2 ra X
B
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|2 3\ where
%’z(:—(vi§<%>,<ci2— E)fio]: 3 (76b)
e A1=S;,— BSTs, (813
5= 0. (763 A1,=As=S1,— B8S;5S, (81b)
Thus we obtain the 8 3 symmetric coefficients for both the e e
explicit and implicit parts. Agy=Sy— BS5,. (810

To close transport equations, we must eliminate the ad-
ditional driving forceF; introduced to include the parallel Thus, the resulting transport matri;, in Lagrangian for-

momentum balance. For this purpose, we chagsas fol- ~ mulation is shown to be Onsage symmetry, the same as in
lows: Eulerian formulation.
Q u Next, let us calculate the total coefficier@g . The per-
U_qu _'§<_"> (77)  turbed distribution functiong are needed to calculate the
lo(h%), y implicit part. From Eq.(68), we obtain

The factor(h?),, whereh=B,/B, is needed to retain the 99, 1y, 19—

ambipolarity in the SOW limit, as shown in Appendix C. By n 25 (829
using this definition, Eq(70) can be solved foF5. It yields K (mvi/B)
F3=—B(SiF11+S3F2), (78) @:_( 2 ) <|7’UH/Q|>— (82b)
B (EK ), S - (79 " 2
== , lop o Py =33
7i I dw d93 (1o 1) —
where S, =S+ S} is the total transport coefficients. Fi- o (mp2/B) 1% (829
nally, neoclassical fluxes are rewritten in the following form:
J A A From here on, we use the approximatid/) =1,=RyB,
[ N 1 M2 _[Fl , (8o)  Which corresponds to the low-plasma. Forj, k=1, or 2,
BATi| A Az LF2 using Eq.(44) yields

15 (hvy(1-A))? 3|tz
_S]k_eITIO[(l 5 ) ((h 1- AC)2>_ <hvf) )’(Ciz_ E) in]

37l 6MipiodRo T , 3)? (hv)?\  375nipiodRo—
=8B, ; dx dho 7556 65 y(ci)o| (h)— ho?) | = 8nBq Sik. (83)
|
where x=exp(—&/T;), No=uBo/E, and 7,=71,01hi/qRy, _ 8Bk, dV -1
respectively. We callS,, the normalized transport coeffi- = (%)= Sw| (86)
: ik P ! 37TqRO dyy

cients. In the equation above, the terms which are propor-
tional to A andA2 are exactly canceled. In a similar way, so that Eq. (78 can be rewritten ang——B(SlgFl

one has +S,3F,).
In the SOW limit,(hv,)>=0 for banana particles, while
g\i-1 (hv,)y?=(hv?) for passing ones. Therefore, transport coeffi-
Sis= —E f dx d)\O?pCi( 2_ E) y(c) cients other tharS33_ are deter_mlned mainly l?y the banana
part. Because of this separation of the contribution to trans-
(hv,)? port between banana and passing, the approximation of
x| (hy— ] ) (84) A )lov as in Eq.(42) used in Ref. 16 yields the same result
(hv u> as the SOW limit of Eqs(83) to (85). However, by using the
(ho > exact solution forS;,, we can include the contribution for
<m Uy neoclassical transport not qualitatively, but quantitatively,
S33= ; J’ dx dhoTpCiy (Ci) Ao o (h (89 from all the orbit types of particles appearing in the near-axis
region. The magnitude of contribution of each particle is
Note that Eq.(83) differs from Eq.(84) only by the factor evaluated by the factdh)— (hv,)?/(hv{).
(1—6,) t=1. Therefore, this difference is neglected in the In the present analysis, we improved the treatment of the
final calculations, and the approximatioBg;=S,;; andS,;  collision term to keep the momentum conservation low.
=S;, are used. As a complement, we define Since we consider only the ion—ion self-collisions helg,
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must vanish in the SOW limit. It is shown in Appendix C Euler and Lagrangian representations Ferand g; are not
that A,; andA;, become zero in this limit, and therefodé  significant when considering the neoclassical transport
vanishes intrinsically. Thus, Lagrangian transport theory aparound(r)~r,.

plied to the region away from the axis, where potato particles

do n_ot appear 'and the SOW limit is valid, reproduces CONy, CALCULATION OF THERMAL CONDUCTIVITY
ventional Eulerian transport theory.

A. Definition of collisionless regime

In this section, we calculate the ion thermal conductivity
C. Comparison with Eulerian transport theory in the near-axis region. In preparation, let us reconsider the

. . definition of the collisionless regime in which the Lagrang-
The representation of fluxes in Eq$.1) and (65) from ian approach is valid.

Lagrangian formulation are different from those in the stan- Usually, the collisionlesgor bananaregime is defined
dard neoclassical transport theory based on Eulerian repreg fO||OWS',
sentation. The former describes the changeVinand Q;, '

which are functions of averaged particle positia#), while qRy ot Vi v,qRy
the latter describes the changeripand p;=n;T; through e e =0~ m<1: (91)
thi

radial fluxes averaged on a magnetic surfacelThen, the
comparison of neoclassical flux between these two represesince banana particles exist in the rangg<uv Je. In Eule-
tations is not straightforward. Let us consider this problen¥ian representation, collisions cause diffusion only in the ve-

here. locity space, and then the collisionless regime can be defined
In preparation, we introduce a normalizing factor @r  as above. In Lagrangian representation, however, collisions
as follows: bring about diffusion directly in théy) direction through

the factord( )/ dv, . This means that the effect of scattering
on each particle differs according to this factor.
Remember here that, as mentioned in Sec. IV B, trans-

N(())=3mTV' Q!

. 3T| 2’7TT| 3/2 ,
T2 m; v ;t dédu I W port coefficients can be obtained by using the estimation that
4 WDA @ e |- (banana
Xexpg — = , - =
Ti o Q (92)
whereV' =dV/dy(y=(4)). \q has a similar property ta,, ” 0  (well-passing.
in Eqg. (51). The particle flux and the heat flux are redefined|, the near-axis region, potato particles can be assumed to
as haved( )/ dv,~—1/€Q, like bananas. The transition of orbit
FiEJEIV’, (889 topology of a potato particle occurs when their averaged ra-
. dial position changes as large as its orbit width~r, or
i=J,/V', 88hb
qi=J2 (88b) N |_ qpio| M3 -
so that they represent fluxes per unit cross section. Note that — % Q4| R,
g; differs from its general definition b¥/; T, since we adopt . .
F,=dInT,/d(¢) as a driving force rather than the pressureT0 ch_ange( y) as large as\,, pitch-angle scattering of the
) ) . magnitude
gradient. Then, transport equations are rewritten as follows: /
L 9 S\ 18
z?l’]l )\n J AU”NAIII/ <l’//>:(ﬂ) Uthi
EJFVW(VT‘):O’ (89) v Ro
is needed. Therefore, with the analogy of E2fl), the effec-
i EﬁiTi N )\_? d vi|g+ EFiTi tive collision frequency for potato ions can be defined as
Jat\2 Vv (9( (ﬂ) 2 1 RO 2/3
vgff:—(—) . (94)
Ti \dpPio
:_)\qeirid_v (90) . . .
() On the other handsz, for potato particles is estimated as
where we assume that the time variationngfand\; is slow o dRo[ Ro 173
compared with that o\ and Q; . These transport equations T E T o\ aon (95
. . . thi \ dPio
have the same dimensions as those of a standard Eulerian _
representatiofi.in the SOW limit,\,, and A, become unity, From Eqs.(94) and(95), we obtain
and Eqgs(89) and(90) reduce to the Eulerian representation. Z-Z(EBOR?))Z’E’
As will be shown in Sec. V C\, and\ is nearly unity =<1 T > W (96)
around the regiogr)~r,, though the finiteness of the po- (m; /mp

tato width significantly affects the transport coefficientswhereT; (keV), n; (10?°° m™3), andm,, is the mass of pro-
there. Only in the regiodr)=<qp;o do they become much ton. For example, if B=4T, Ry=4m, and n;=1
larger than unity. Then, the qualitative differences betweernx 10°° m~2 for hydrogen ion, thei;>5 keV is needed for
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the collisionless assumption. Note that the criterion @6) r
corresponds to that from the usual definitionsgfin Eq.(91) i .
evaluated at=r,, as mentioned in Ref. 13. E N\
In reality, barely transit potato particles have much . \
longer 7, than the estimation in Eq95). Then, particles 2' ~
around the transition boundalt® in Fig. 3 break the colli- 10 E ~
sionless assumptiod.<1. Treating these collisional par- F
ticles in Lagrangian transport theory like the banana-plateau
transition in the standard Eulerian thebig not considered g
here. Therefore, our calculation corresponds to the collision-
less limit of neoclassical transport.

B. lon heat flux :
In Eulerian transport theory, the ion heat flux is ex- i T

pressed as follows: . . . S .
) g 0 0.1 0.2 0.3
T T @ <r>[m]

Where)(-’ is the ion thermal Conductivity in the direction. FIG. 6. The ion thermal conductivity normalized I:ﬁpizolri . Solid line is

H I the f b is th It 6 lecti the result from our Lagrangian formulation. Dashed line is from standard
. ere,q; in the Orm as a Ov_e is the result 6§ neglecting Eulerian theory by Hinton and Hazeltine.

ion—electron collisions, andi) I';=0 because of the mo-

mentum conservation in ion—ion self-collisions. In the La-
grangian approach, however, the condition=0 is not in-
trinsic. In reality, the momentum-restoring te®pF 5 in J) _ '
cannot exactly canc@,,F,+ S;,F,, especially in the region Sik((r))= lim anl Fik(Xn Aon {1 ); o), (100
near the magnetic axis. This is because of the nonlocal nature Nzl 20

of Lagrangian formulation, and partially because only the _ _

lowest order expansion af; is included. In the present cal- Where N is the total number of test particles and

culation, we rewrite the transport equation in E80) to  (Xn.Non;0tn) is the position of thenth test particle in the
eliminateF, phase space. We can include all the types of orbit to transport

coefficients. Note that we approximate-®, =1 so that

N

Qi<r> g12 — d S11= Syz3 and Sy= Sps.
T: —_Fim_”iXi(r)%'”Ti' (98 As an example, we calculate the ion thermal conductiv-
i Sn ity x{" under the conditionsBy=4T, q=3, T;=20
30202 2 keV, andn;=1x10?° m~3. The radial electric fieldid/dr
Xi<r>: I NI i , (99) is neglected. In this case, typical potato particles appear in
32w (e)’ Sy the region(r)=r,=0.244 m. According to Eq(96), the

plasma is well in the collisionless regime. The calculation
result of x{" is plotted in Fig. 6. For comparisory, by a
standard Eulerian theory in the banana rediisealso plot-
ted. Note thaty| is obtained by regarding as(r).
3 P22 A significant reduction irp(i<r> can be seen in the region

It is well-known that x;=q“pjo/(e ol (ry=r,. The main reason of this reduction, explained in the
theory, while the apparent dependence af"” is Lagrangian approach, is that potato particles, which mainly
6o/ ({€)°r). However,S away from the magnetic axis contribute to the radial transport, cannot exist in the region
is proportional toy(e), andy{" has the same dependency as(ry=r /4 when observed in the COM spacg ,(r)), as is
xi there. shown in Fig. 3. The FOW effect is thus included in the
calculation by reflecting the real population of potato par-
ticles near the magnetic axis.

In Fig. 7,\, defined in Eq(87) is plotted. One can see

Numerical calculation of transport coefficients in Eg. that A, becomes much larger than unity only on the inner-
(83) is implemented by using the Monte Carlo integration most point(r)=2qp;o=0.03m in this case. As mentioned in
method. In the calculation, test particles which have a giversec. IV C, simple comparison qf between Lagrangian and
(r) are generated randomly and uniformly in the phase spacgulerian formulations is possible as longXag=1. Then, it
(X,Ao;0v), wherex and\ are defined in Sec. IVB. And, all  can be said that the reduction of the ion thermal conductivity
the functions in the integrand o8, which we write occurs not only when it is observed in g coordinate, but
Fik(X,\o,(r);o¢) here, are calculated by tracing each par-also in the real space aroumd-r /2. On the other hand, it
ticle orbit. Then, transport coefficients @ty are given as will be an underestimation thag~0.1 at(r)=0.03m be-

whereq, p;o, andr; are evaluated at=(r), and we change
the radial coordinate fron) to (r). The ion heat conduc-
tivity x{" defined in this way is compared §§ , thoughI'{"

does not vanish here.
327 in Eulerian

C. Calculation result and discussion
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o1 o2z o3

FIG. 7. Dependence of, defined in Eq.(87) (solid ling) and the ratio of
transport coefficienté\;1/A,, (dashed lingon (r).
FIG. 8. Hy=(h)—(hv)%/(hv?) vs \, for ions with £=20 keV at(r)

L. . =0.12 m. The transition boundary is B=0.965. Abbreviations of orbit
cause it is almost the same level as the classical transpogke are the same as in Figs. 3 and 4.

)(i~pi20/7'i , and also because af>1 there.

In Fig. 7, we also ploA;1/A,,, which is approximately
the ratio ofT’; to g; . Away from the axis it is almost zero and
then I'; can be neglected, while it becomes finite around

(r)=ry/2. Itis the FOW effect that cause the finite particlethe plrofiles, of the treatment of .coIIision terms, and of th‘?
flux by ion—ion collisions. Since the electron particle flux is algorithms used in each calculation. More detailed compari-

negligible compared to the ion flux, radial electric fiekd son between Lagrangian formulation afidsimulations will

will develop to satisfy ambipolarity; =0+ O(ym./m;).*2 € done in a future work.

In our present formulation, however, the ambipolar electric

field cannot be calculated correctly, because it requires solv-

ing dE, /dt from the particle flux equation, which in turn

affects transport coefficientAjk((r>,t) through the orbit- /| SUMMARY

squeezing effect of potato particlésFuture work will de-

termine neoclassicdt, in the core region. Lagrangian formulation of neoclassical transport theory
Next, to investigate the degree of contribution from eachjs applied to the near-axis regign)~r , to include the ef-

orbit type to transport coefficients, we plot in Fig. 8 the fect of potato particles in the calculation of ion thermal con-

factor H;=(h)—(hv)?/(v{) for particles at(r)=0.12 m  ductivity. In a collisionless regime plasma, a significant re-

and&£=20 keV. SinceS;, containsH;, one can see that not duction of x; compared to the standard neoclassical level is

only banana particles but also all the potato particles, that ifound as shown in Fig. 6. By introducing the factqy, we

kidney, outer-circulating, and inner-circulating particles ap-show that the direct comparison gf between Eulerian and

pearing around the transition boundary, contribute transpoitagrangian representations is possible at , .

to the same degree. In the numerical calculation, the factor Since the reduction of; occurs from(r>~rpocq2’3, the

H, is evaluated without any approximation by using thefiniteness of potato orbit on neoclassical transport will be

Monte Carlo integration method. important in a reversed-shear configuration in which ghe
The reductive tendency of; in the near-axis region is value becomes very high at the near-axis regfofihe de-

the common feature of recent simulation restfi€® Our  velopment of ambipolar radial electric fie} and its effect

Xi<r> also shows a similar dependence (@i to these simu- on y;, will be studied in a future work.

lations, for example, to the fitting formula by Lat al. based In the present article, we show that the Lagrangian trans-

on a simple random-walk model. This suggests that the negort theory is of practical use in treating transport phenom-

classical transport in the near-axis region can be explainedna in which the orbital property of particles is really impor-

by the random-walk diffusion process of the potato-centetant. This approach will also be useful to analyze other

(r). However, there is a difference between ours and th@roblems treating FOW effects, such as the bootstrap current

others in that the reduction gf; compared to the standard near the magnetic axis, or the neoclassical transport around

neoclassical value beginsrat r, in our calculation, while it the internal transport barrier in tokamaks where the gradient

begins from a somewhat more outer position2r, in the  scale length of plasma pressure becomes comparable to typi-

other simulations. This may be caused by the differences afal banana width.
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To use Gauss’ theorem to take moments of the reduced
kinetic equation60), some boundary conditions are needed.
_ i+ a0* i (A1) First, consider the boundary=0. Here, note that all the
*\ay ) a6 P integrand having the forr/ du in Eq. (60) is proportional to
where a, =1v,/Q evaluated at the averaging point,6) m. Then, the surface integral vanishes there. Second, con-

=({(y),6*). The difficulty lies in the evaluation of sider the boundary.;, where a copassing particle moves

d6*13(y). First, let us consider the case for orbits which nto a kldngy region. This transition occurs cor'1t|nuou.sly,'
i i . ) since the difference between kidney and copassing orbits is
have the turning points of, that is, for banana, outer-

. : ) . . ; ) __only that the former has turning point of, and the latter
circulating, and inner-circulating orbits. The averaging pointyoas not. Then. we have

of these orbits can be approximated by the turning points.
Therefore, from the equation & in Eq. (21), da, /dy=1

From the definition ofs, , we have to evaluate

o . . lim J.(u;0=P+)=lim J(w;0=K). B2
must be satisfied on the averaging point. Then, we have #L# lpiot ) L o(i0=K) B2
3 M3
d [day
90 w E; Therefore, the surface integral is canceleduat between

=— . (A2) copassing and kidney, since any physical value in the inte-
‘9< lﬂ> d (aa*) dE is al .
— | == grandF is also continuous on the boundary.
90\ Iy On the boundary,, a banana particle bifurcates into a
Substituting Eq(A2) into (A1), we have kidney or a counterpassing particle as shown in Fig. 5. At the
limit = u,, the particle is stagnated at,@) = ({(r), ). All
the values contained in the integraRcare then evaluated at
the stagnation point. On the other hand, the Jacobjdve-
0= B B B/ 3B 5 PIN comes infinity atu, as is pointed out in Sec. Ill. Noting that
mvz(g— (7_+ (?_ (7_ M mo the kidney and counterpassing orbit at the boundary corre-
I L - 90\ I spond to outer- and inner sections of a banana orbit, we have

(aB 9°B B (925)

uB+ mvf - uB
(A3)

Note that Eq(A3) is evaluated at the averaging point. Since IM Jc(x;0¢=B)

v,=0 at the turning point of, one can see that, =0 for “ "
banana and outer-, inner-circulating orbits. As concerns kid- = lim [J (u;0=K)+J(u;0¢=P—)]. (B3)
ney orbits, we can evaluat®*/J() by approximating the oo

averaging point by the turning point of,. Then, one also
finds thaté, can be neglected for kidney orbits.

For passing particles, we cannot determine the averaging
point #* in a simple way as above. However, for well-
passing particlesg#*/9{¢s) in Eq. (A1) can be negligible,
and one can estimate

day, 1B qp
“a B ()
which is negligible when considering)~r,>qp.

Thus, the approximation 16, =1 is ensured for all ~ | ===== -
types of orbit.

Oy (Ad)

w

APPENDIX B: INTEGRAL IN THE (&,u) PLANE .

In the derivation of transport equations, integrals in the 0 u2 HS H1

_(51//4) plane appear. We prove some prope_rties used in theig 9. Integral path in the: direction. Abbreviations of orbit types are the
integral here. Consider a integral of a functien same as used in Figs. 3 and 4.
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Therefore, the integrané for each orbit type is required to where we have used the flux-surface average

be continuous on the boundary so that the surface integral on

the boundaryu, can be canceled between banana, counter- (h?) :id_\/ 2r_do 2

passing, and kidney. V" 2mdy Jo B-VE
The last condition is on the.=w, corresponding to - .

stagnated outer-circulating orbits. In E@O0), one can see And, combining Eqs(86) and (C2) yields

that all the terms within the/du operator havey, in the B=5.1 (C3)

averaged operatdr--P). As mentioned in Sec. liy, is not 1

exactly zero for stagnated orbits when particle orbits aresinceA;;%S;,(1— 8S;,) andA;,xS;(1— BS;y), the trans-

solved strictly. Then, there remains a small contribution fromport matrix Aj other than theA,, component vanishes in-

the surface integral in the direction when one takes the trinsically. Therefore, ion particle flux does not occur in La-

moment of Eq.(60) to obtain Eqs(61) and (65). However,  grangian formulation in the SOW limit when only ion-ion

this contribution vanishes in the SOW limit, since the stag-collision is considered.

nated condition ig),=0 in this limit. Therefore, the contri- Note here that, in the SOW limit, E483) for S, be-
butio_n from the surfa_ce_ intggral_ taN; /ot and 9Qi/dt IS omes the same form as E(O) in Ref. 25, since](hvu)
considered to be negligible in this paper. =0 for bananas in this limit. Then, the ion thermal conduc-

As a consequence, the perturbed distribution funaien ity obtained from our formulation reproduces the result
must have a continuous derivativgy/Ju on the boundary  ¢rom Eylerian formulation in the SOW limit. Though this
w2 and ug. This fact is used in Eq82). property has already been proved by Bernsteiral, we

succeed in introducing the momentum-conservation nature in
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