
Lagrangian neoclassical transport theory applied
to the region near the magnetic axis

言語: eng

出版者: 

公開日: 2010-01-08

キーワード (Ja): 

キーワード (En): 

作成者: "Satake,  Shinsuke, Okamoto,  Masao, Sugama, 

Hideo"

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10655/2230URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Physics of Plasmas 9, 3946 (2002); https://doi.org/10.1063/1.1499952 9, 3946

© 2002 American Institute of Physics.

Lagrangian neoclassical transport theory
applied to the region near the magnetic axis
Cite as: Physics of Plasmas 9, 3946 (2002); https://doi.org/10.1063/1.1499952
Submitted: 01 May 2002 • Accepted: 19 June 2002 • Published Online: 22 August 2002

Shinsuke Satake, Masao Okamoto and Hideo Sugama

ARTICLES YOU MAY BE INTERESTED IN

Guiding center drift equations
The Physics of Fluids 23, 904 (1980); https://doi.org/10.1063/1.863080

Neoclassical equilibria as starting point for global gyrokinetic microturbulence simulations
Physics of Plasmas 17, 122301 (2010); https://doi.org/10.1063/1.3519513

Gyrokinetic field theory
Physics of Plasmas 7, 466 (2000); https://doi.org/10.1063/1.873832

https://images.scitation.org/redirect.spark?MID=176720&plid=1650557&setID=377252&channelID=0&CID=601062&banID=520541066&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=dbfa8be07b118451e51be8792a6c6154e48e7ddf&location=
https://doi.org/10.1063/1.1499952
https://doi.org/10.1063/1.1499952
https://aip.scitation.org/author/Satake%2C+Shinsuke
https://aip.scitation.org/author/Okamoto%2C+Masao
https://aip.scitation.org/author/Sugama%2C+Hideo
https://doi.org/10.1063/1.1499952
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.1499952
https://aip.scitation.org/doi/10.1063/1.863080
https://doi.org/10.1063/1.863080
https://aip.scitation.org/doi/10.1063/1.3519513
https://doi.org/10.1063/1.3519513
https://aip.scitation.org/doi/10.1063/1.873832
https://doi.org/10.1063/1.873832


Lagrangian neoclassical transport theory applied to the region
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Neoclassical transport theory around the magnetic axis of a tokamak is studied, in which relatively
wide ‘‘potato’’ orbits play an important role in transport. Lagrangian formulation of transport theory,
which has been investigated to reflect finiteness of guiding-center orbit widths to transport
equations, is developed in order to analyze neoclassical transport near the axis for a
low-collisionality plasma. The treatment of self-collision term in Lagrangian formulation is revised
to retain momentum conservation property of it. By directly reflecting the orbital properties of all
the types of orbits in calculation, the ion thermal conductivity around the axis is found to decrease
from that predicted by conventional neoclassical theory. This result supports recent numerical
simulations which show the reduction of thermal conductivity near the magnetic axis. ©2002
American Institute of Physics.@DOI: 10.1063/1.1499952#

I. INTRODUCTION

Recently, neoclassical transport in the core region of to-
kamaks has again attracted much attention. It is well-known
that there appear nonstandard guiding-center orbits near the
magnetic axis called ‘‘potato’’ orbits.1 The typical orbit width
of potato particles is as large as (q2r2R0)1/3, whereq is the
safety factor,r is the Larmor radius, andR0 is the major
radius, respectively. In recent tokamak experiments in
reversed-shear configuration accompanied by the internal
transport barrier~ITB!, the measured ion thermal conductivi-
ties in the core region sometimes become lower than those
predicted by a conventional neoclassical transport theory.2,3

In fact, the standard neoclassical transport theory4,5 con-
structed in the small-orbit-width~SOW! approximation is not
applicable to the near-axis region, and the orbital properties
of potato particles should be considered in analyzing trans-
port in this region. Then, several transport theories have been
presented to include the effect of potato particles,6–9 and
Monte Carlo simulations~the so-called thed f -method!10–13

have also been carried out to calculate the ion thermal con-
ductivity x i in the near-axis region. However, there exist
differences in the resultantx i ’s depending on the model used
in analytical calculations, and neoclassical transport theory
in the near-axis region is not completed yet.

Neoclassical transport theory has usually been discussed
in Eulerian representation. The extension of the theory to the
near-axis region has also been discussed in an Eulerian man-
ner. However, to include orbital properties in the transport
theory, Lagrangian formulation14–16was found to be suitable
for a collisionless~banana-regime! plasma. In this approach,
transport phenomena are described by a reduced drift-kinetic
equation in the space of three constants-of-motion~COM!

along a collisionless particle orbit in a tokamak. The previ-
ous works proved that Lagrangian formulation can reproduce
the results obtained from the standard Eulerian formulation
built in the SOW limit.

The present article is the first application of Lagrangian
formulation to the near-axis region in which the finite-orbit-
width ~FOW! effect becomes really important. To utilize La-
grangian transport theory, we improve the treatment of the
like-particle collision term in the formulation to retain the
momentum conservation property. In contrast to the other
calculations using some analytical approximations, our cal-
culation reflects quantitatively the properties of all types of
particles appearing near the magnetic axis. It is found that
the ion thermal conductivityx i obtained by Lagrangian
transport theory becomes significantly lower than that pre-
dicted by conventional Eulerian theory. Our result supports
the recent results of both Monte Carlo simulations and ex-
periments in the core region.

In Sec. II, analysis of guiding-center orbit is reviewed,
and the classification of orbit types in the COM space is
presented. The reduced kinetic equation and collision opera-
tor in the COM space are derived in Sec. III, and the trans-
port equation is obtained by solving the kinetic equation in
Sec. IV. We also discuss how to compare the neoclassical
flux between Lagrangian and Eulerian representations.
Transport coefficients, especially the ion thermal conductiv-
ity in the near-axis region, is calculated in Sec. V.

II. PARTICLE ORBIT NEAR THE MAGNETIC AXIS

As pointed out in recent works,17,18 the guiding-center
orbit near the magnetic axis is not as simple as in conven-
tional analysis, in which particle orbit has been classified as
‘‘passing’’ or ‘‘banana.’’ Let us explain key points in analyz-
ing the orbit here.a!Electronic mail: satake@nifs.ac.jp
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Consider a guiding-center motion projected on the poloi-
dal cross section (r ,u) of a tokamak. The magnetic field
strength is given asB5B0@12(r /R0)cosu# and q value is
assumed to be constant. The guiding-center velocity of a
particle is expressed asv5v ib1vd , whereb5B/B andvd is
the drift velocity in the direction across the magnetic field
lines. To investigate orbit topology, the poloidal angular ve-
locity u̇ is considered. In the low-b approximation, it is
given by

u̇5~v ib1vd!•¹u.
1

qR0
Fv i2

q

rV0
S v i

21
v'

2

2 D cosuG ,
~1!

whereV05eB0 /R0 . One can see that the contribution of the
second term, which arises fromvd•¹u, is proportional to
r 21 and then it becomes significant when a particle is ap-
proaching the magnetic axis. This fact means that orbit to-
pology cannot be classified in the usual way by counting
only the turning points ofv i . We have shown19 that the
proper way of classifying orbits is to count both the turning
points ofs i5v i /uv iu andsu5 u̇/uu̇u along a particle orbit.

The criterion of classifying orbit types is shown in Table
I, and examples of orbits are shown in Figs. 1 and 2. Here,
we use some new names of orbit types which are character-
istic of the near-axis region. Outer-, and inner-circulating
particles are localized on either side of the magnetic axis,
though they do not changes i like passing particles. Kidney
orbits18 encircle the axis, though they are trapped in the mag-
netic mirror like bananas. We distinguish a concave-kidney
orbit from a kidney orbit, according to the turning points
of su .

Such a detailed classification as above is needed to iden-
tify particle orbit in the (E,m,^r &) space, in which we will
discuss Lagrangian formulation. Here,E is the energy,m is
the magnetic moment, and^r & is the radial position averaged
over one poloidal period, which is defined by Eq.~6!. The
region of each orbit type in the (^r &,l0) plane for E
510 keV hydrogen ions is shown in Figs. 3 and 4. Here,
l05mB0 /E is the normalized magnetic moment. The circle
in Fig. 3 corresponds to the fattest banana orbitB in Fig. 1,
the width of which is 2(2q2r2R0)1/3, wherer5v/V0 . Po-
tato orbits, of which typical width becomesD r

;(q2r2R0)1/3, correspond to those appearing around

~^r &,l0!;~~q2r2R0!1/3,16~qr/R0!1/3! ~2!

in Figs. 3 and 4. For the convenience of notation, we intro-
duce a typical small radius

r p52~2q2r i0
2 R0!1/3, ~3!

wherer i05v thi /V i0 is the Larmor radius of thermal ions. In
this article, we use ‘‘potato particles’’ to describe those which
appear 0,r ,r p with their orbit width beingD r;r p .

One of the important features in Figs. 3 and 4 is that
there are some overlaps in the regions of orbit types around
the solid-line part of the boundaryl2. In overlapped regions,
the particle orbit cannot be identified only by the value
(E,m,^r &;s i). Therefore, the criterion in Table I should be
adopted to identify orbits.

FIG. 1. Examples of particle orbits forE510 keV ions in the model field
B054T andq53. The circle and bar marks represent turning points of the
signssu and s i , respectively. Orbit types are A: standard banana, B: the
fattest banana, C: passing, D: inner-circulating, and E: outer-circulating,
respectively.

FIG. 2. Examples of kidney~F! and concave-kidney~G! orbits.

TABLE I. Classification of particle orbits.

Orbit type s i , su
a Sign of s i

Passing 0, 0 1 or 2

Banana 2, 2 6

Outer-circulating 0, 2 1b

Inner-circulating 0, 2 2b

Kidney 2, 0 6

Concave-kidney 2, 4 6

aNumbers of turning points.
bFor ions. The sign is opposite for electrons.
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As it is approachingl2, a banana~concave-kidney! orbit
bifurcates into a kidney and a counterpassing~inner-
circulating! orbit, as shown in Fig. 5. Such barely transit
particles are almost stagnated at (r ,u)5(^r &,p). We call the
solid-line part of l2 ‘‘the transition boundary’’ hereafter.
There is an other type of stagnated particles that appear on
the boundaryl1. They are outer-circulating particles stag-
nated at (r ,u)5(^r &,0) and they move only in the toroidal
direction. Conventionally, such particles have been regarded
as banana particles in the limitv i50, but in fact stagnation

occurs whenu̇ becomes zero on theZ50 plane, and stag-
nated particles have finitev i . Note that on the dashed-line
part of l2 ~the left side from the triangle mark in Fig. 3!,
bifurcation of orbit types does not occur. This boundary cor-
responds to inner-circulating orbits with zero width like
outer-circulating particles atl1.

One advantage in using (E,m,^r & ~or ^c&)! as a set of
COM variables is that, in the collisionless limit, the position-
like variable ^r & changes continuously when crossing the
transition boundary. This is because, as mentioned above,u̇
becomes zero as a particle approaches the transition bound-
ary l2, and then the averaged position of such a transit par-
ticle corresponds to the stagnation point (r ,u)5(^r &,p). On
the other hand,g0 used in Ref. 15, which is the minor radius
of one of two crossing points of orbit with theZ50 plane,
changes discontinuously at the transition boundary. It is also
practical to choosêr & as the position-like variable in that
^r & is the most suitable value to represent the lowest-order
approximation of the particle position.

Finiteness of orbit width appears on the region of each
orbit type. In the zero-width limit, banana particles exist in
the range 12^e&<l0<11^e&, where^e&5^r &/R0 . In real-
ity, however, this simple analysis is not valid for the region
0,^r &&r p in which potato orbits appear. Moreover, because
of the finiteness of the orbit width, no particles exist at^r &
,qr. The existence of outer- and inner-circulating particles
can be found only if the finiteness of orbit width is consid-

FIG. 3. The regions and the boundaries for each types of orbit in the
(^r &,l0) plane forE510 keV ions. Orbit types are abbreviated as B: ba-
nana, P1: copassing, P2: counterpassing, OC: outer-circulating, IC: inner-
circulating, respectively. The solid-line part ofl2 up to the triangle mark is
the transition boundary. The boundariesl1 and the dotted-line part ofl2
correspond to zero-width outer-circulating and inner-circulating orbits, re-
spectively.l3 is the boundary between the kidney and copassing regions.
The circle mark corresponds to the fattest banana orbit.

FIG. 4. Regions of K: kidney~shaded! and CK: concave-kidney~enclosed
by solid lines! orbits. The kidney region overlaps with the banana, copass-
ing, and concave-kidney regions. A part of the concave-kidney region over-
laps with the copassing region.

FIG. 5. Transition in orbit types.~a! A banana orbit changes into a kidney or
a counterpassing orbit according to the position on which the transition
occurs.~b! Similarly, a concave kidney changes into a kidney or an inner-
circulating orbit.
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ered, and they have not been treated in the conventional neo-
classical transport theory, nor in the recent studies treating
the near-axis region. However, they will affect transport
around the axis because some of them have large orbit width
D r;r p .

In the forthcoming sections, we will derive the Lagrang-
ian formulation of neoclassical transport theory which can
include the orbit properties near the magnetic axis discussed
here.

III. KINETIC EQUATION IN LAGRANGIAN
FORMULATION

A. Reduction of the kinetic equation

Consider an axisymmetric configuration. We use the
magnetic coordinate system~c,u,z!, wherec, u, z is the po-
loidal flux, the poloidal angle, and the toroidal angle, respec-
tively. The electromagnetic field is represented asB5I¹z
1¹z3¹c and E52¹F(c), where I 5RBt and we as-
sume that the field is time independent. Three constants of
motion in an axisymmetric configuration are

E5
mav2

2
1eaF5

mav i
2

2
1mB1eaF, ~4a!

m5
mav'

2

2B
, ~4b!

Pz5c2
maR2

ea
v•¹z, ~4c!

wherev i5v•b, v'5uv2v ibu, and the subscripta denotes
particle species. The starting point of Lagrangian formulation
of neoclassical transport theory is the drift-kinetic equation
in an Eulerian representation in the (x,E,m) space

]

]t
f a~x,E,m,t !1 ẋ•

] f a

]x
5Cab , ~5!

where˙5d/dt, x is the guiding-center position, andCab is a
collision operator. Note that Eq.~5! is independent of the
gyrophasef. We change the independent variables in Eq.~5!
into three constants of motion in the collisionless limit
(z1 ,z2 ,z3), and the other three variables (z̃4 ,z̃5 ,z̃6). One
can choose an arbitrary set of independent variables (z,z̃). In
this paper, we choose (z̃4 ,z̃5 ,z̃6)5(u,z,f), while z15E,
z25m, andz35^c& instead ofPz . ^c& represents the aver-
aged radial position of a particle orbit. The orbit average
operator for any functiona(z,z̃) is defined as

^a&[
1

4p2tp
R du

u̇
dz dfa~z,z̃!, ~6!

where

tp[ R du

u̇
~7!

is the poloidal period of an particle orbit. Note that the inte-
gral is carried out along one poloidal circuit of the particle

orbit. Note also that we can usez35^r & instead of̂ c& when
it is convenient. By using the set of variables (z,z̃), Eq.~5! is
transformed into

]

]t
f a~z,u,t !1 u̇

] f a

]u
5Cab , ~8!

where the property]/]f5]/]z50 is used.
We introduce here an ordering parameterdc as

dc5nc
efftp!1, ~9!

wherenc
eff is a typical collision frequency. This assumption

corresponds to the condition that the plasma is in the colli-
sionless regime, or the banana regime. In Eq.~8!, ] f /]t and
Cab are assumed to beO(dc), so that the variables
(E,m,^c&) can really be the constants of motion through the
lowest order indc . Expandingf a with dc , the lowest part
becomes

u̇
] f 0

]u
50, ~10!

where we omit the subscripta. On the other hand, from the
conservation of volume in the phase space, one has

1

Jz

]

]z
•S Jz

dz

dt
D 1

1

Jz

]

] z̃
•S Jz

dz̃

dt
D 50, ~11!

where Jz(z,u) is the Jacobian of the transform (x,v)
→(z,z̃). Sincedz/dt50 to O(dc

0), one obtains

Jzuu̇u5J0~E,m,^c&!, ~12!

f 05 f 0~E,m,^c&!. ~13!

Next, by using Eq.~11!, O(dc
1) part of Eq.~8! can be

written as

]

]t
f 0~z,t !1

1

Jz

]

]u S Jz

du

dt
f 1D5

1

Jz

]

]z
•S Jz

]z

]v
•G~ f 0! D , ~14!

where the right-hand side is derived from the fact that the
collision term can be written in the divergence form in the
velocity spaceC( f )5¹v•G( f ). The last procedure is to take
the orbit average of Eq.~14!. It yields

] f̄

]t
5

1

Jc

]

]z
•S JcK ]z

]v
•G~ f̄ !L D5C̄, ~15!

where f̄ 5 f 0 is used to emphasize thatf̄ is a function of
(E,m,^c&,t), and

Jc~E,m,^c&![4p2J0tp ~16!

is the Jacobian in the (E,m,^c&) space. The collision term is
also averaged over a particle orbit. Thus, we obtain a reduced
drift-kinetic equation in the (E,m,^c&) space.

B. Jacobian

Here, we derive the explicit form of the JacobianJc

defined in Eq.~16!. First, consider the transform from Car-
tesian coordinate system~x,v! to the guiding-center variables
~c,u,z,E,m,f!. The Jacobian of the transform is20
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J5
1

~B•¹u!
•

B*
m2uv iu

, ~17!

whereB* 5B@11(v i /V)b•¹3b#. By changingc to its or-
bit averaged valuêc&, we obtain the set of variables (z,z̃)
5(E,m,^c&,u,z,f). Therefore, the JacobianJz can be writ-
ten asJz5Ju]c/]^c&u. To determineJz , we use the conser-
vation of Pz ~of its gyro-averaged form!

Pz5c2
I

V
v i5const. ~18!

Taking the orbit average of both sides, it becomes

c2
I

V
v i5^c&2 K I

V
v i L . ~19!

Differentiating both sides bŷc&, we have

F12
]

]c S I

V
v i D G ]c

]^c&
512

]

]^c& K I

V
v i L . ~20!

Note that all partial derivatives in Eq.~20! are taken withE,
m, andu being kept constant. Next, by using the equation of
guiding-center motion,20 one obtains

u̇5v•¹u5
v iB•¹u

B*
F12

]

]c S I

V
v i D G . ~21!

Then, combining Eqs.~17!, ~20!, and~21! yields

Jz5
1

m2uu̇u
u12d* u, ~22!

where

d* [
]

]^c& K I

V
v i L . ~23!

Thus, one can confirm thatJzuu̇u5J0 in Eq. ~12! is indepen-

dent of u̇. Finally, combining Eqs.~16! and ~22!, we obtain
the Jacobian in the~E,m,^c&! space

Jc5
4p2

m2 tpu12d* u. ~24!

In a numerical calculation, the poloidal periodtp can
easily be determined. As concernsd* , it should be noted
that, from Eq.~19!

K I

V
v i L 5

Iv i

V U
(^c&,u* )

, ~25!

where (c,u)5(^c&,u* ) is the position at which a particle
crosses its averaged flux surfacec5^c&. We call it ‘‘the
averaging point’’ of an orbit. Then, Eq.~23! is interpreted as

d* 5S ]

]c
1

]u*

]^c&

]

]u D Iv i

V U
(^c&,u* )

, ~26!

where]u* /]^c& represents the displacement of the averag-
ing point. Fortunately, however, we can estimate that 1
2d* .1 for almost all particles as shown in Appendix A.

Though we retain the term 12d* in the derivation of trans-
port equation hereafter, it is approximated to be unity in the
numerical calculations.

An important property ofJc arises from the factortp for
particles which are stagnated on theZ50 plane. Remember
that there are two types of stagnated orbit. One type is the
outer-circulating orbit stagnated at (c,u)5(^c&,0) ~on the
l1 boundary in Fig. 3!, and the other is the stagnated orbit at
(c,u)5(^c&,p) ~on the transition boundaryl2!. Approach-
ing the l1 boundary, orbits resemble a pendulum motion in
theZ direction with a infinitesimal oscillation. Therefore,tp

remains finite onl1. On the other hand,tp→` when ap-
proaching thel2 boundary. Then, we have

lim
m→ l1

Jc5finite, ~27a!

lim
m→ l2

Jc5`. ~27b!

We have shown that, in the~E,m,^c&! space, there are
some overlaps in regions of orbit types. Then,Jc(z) and f̄ (z)
are generally multivalued functions ofz depending on the
orbit types. We introduce the signs t to indicate the orbit
type of each particle. The notationJc(z) and f̄ (z) implicitly
means that they also depend ons t ; Jc5Jc(z;s t), etc.

C. Collision operator

To obtain transport equations in the~E,m,^c&! space, we
need to evaluate the change rate of COM by collisions. First,
consider the collision term in Eulerian representation21

Cab5Kab

]

]v
•E d3v8 U~v2v8!•F] f a~v!

]v
f b~v8!

2
ma

mb
f a~v!

] f b~v8!

]v8 G , ~28!

where

U~v!5
l

uvu
2

vv

uvu3 ,

Kab5
ea

2eb
2 ln L

8pe0
2ma

2 .

Substituting Eq.~28! into the averaging operator Eq.~6!,
we obtain the exact description of the orbit-averaged colli-
sion term15

C̄ab5
1

Jc

]

]z
•FJcS A f̄ a~z!1D•

]

]z
f̄ a~z! D G , ~29!

where

A52Kab

ma

mb
K ]z

]v
•E d3v8 U~v2v8!•

]

]v8
f̄ b~z8!L ,

~30a!

D5KabK ]z

]v
•E d3v8 f̄ b~z8!U~v2v8!•

]z

]vL . ~30b!

Note thatz8 in Eq. ~30! is a functional depending onu
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z85~E8,m8,^c&8!5~E8,m8,^c&1c̃8~z,E8,m8,u!!,

wherec̃8 arises from the finiteness of particle orbit width. In
this sense, the averaged collision term Eq.~29! has a nonlo-
cality. Moreover, since Eq.~29! is a integro-differential func-
tion, it is not suitable for solving analytically. Therefore, we
need some approximation to handle the collision operator in
Lagrangian formulation.

From here on, we consider only the ion transport be-
cause the FOW effect near the magnetic axis is important for
ions. We neglect the ion–electron termCie , since it is
smaller than the ion–ion termCii by a factorAme /mi . An
easy approximation for the collision term is the Lorentz op-
erator, which had been used in the fundamental study of
Lagrangian formulation by Bernstein and Molvig,14 but it
does not conserve momentum. It is well-known that the mo-
mentum conservation property of like-species collisions
plays an important role in transport theory. Therefore, we use
here a model collision operator which conserves the parallel
momentum locally so that the transport equation may repro-
duce the result obtained from Eulerian formulation in the
SOW limit.

The model collision operator is given in the following
form22

Ci~ f i !5
n i

2

]

]v
•~v2l2vv!•

]

]v
f i1n i

miv iui i

Ti
f iM , ~31!

whereui i is a functional off i , and f iM is a local Maxwell-
ian. Collision frequencyn i is defined as

n i5
3Ap

4t ici
3 y~ci !, ~32!

whereci5v/v thi and

t i
215

niZi
4e4 ln L

3p3/2e0
2mi

2v thi
3 , ~33a!

y~c!5S 12
1

2c2DC~c!1
1

2c
C8~c!, ~33b!

C~c!5
2

Ap
E

0

c

dx e2x2
. ~33c!

Here,ui i is determined to conserve the parallel momentum

E d3v v iCi~ f i !50. ~34!

Then, substituting Eq.~31! into this equation yields

ui i5
t i

2niK1
E d3v n iv i f i , ~35!

where

Kn[E
0

`

dc e2c2
cny~c!. ~36!

It is convenient to rewrite Eq.~31! in the divergence
form, by noting] f M /]v52(mv/T) f M

Ci~ f i !5
n i

2

]

]v
•F S V~v!•

]

]v
f i2

miui i

Ti
wf iM D G , ~37!

whereV(v)5v2l2vv andw5v2b2v iv. SinceV•v50 and
w•v50, the model collision operator Eq.~37! also conserves
particle number and energy.

Finally, by taking the orbit average of Eq.~37!, we ob-
tain the orbit-averaged model collision operator

C̄i~ f̄ i !5
1

Jc

]

]z
•Jc

n i~ci ,^c&!

2
F K ]z

]v
•V•

]z

]vL ] f̄ i

]z

2 K miui i

Ti

]z

]v
•wf iM L G . ~38!

We neglect here the variation ofn i along an ion orbit be-
cause, though typical ion orbit width becomes as large as
D r;r p there, experiments show that density and temperature
profiles near the axis are flat. Note also that we neglect the
variation of v along a particle orbit in averaged collision
terms. To ensure this approximation, it it assumed that

E@UD rei

dF

d^r &
U, ~39!

andv is evaluated as

v5A 2

mi
@E2eiF~^c&!#. ~40!

In Eq. ~38!, we need to evaluate]z/]v. It is immediately
shown that

]E
]v

5mv,

]m

]v
5

mv'

B
.

We also need the expression of]^c&/]v. This factor is im-
portant in Lagrangian formulation, because it measures the
rate of excursion in average radial position of a particle by
scattering in the velocity space.]^c&/]v can be obtained by
taking partial derivative on both sides of Eq.~19!. It gives

]^c&
]v

52
I

V
b1

]

]v K Iv i

V L
52

I

V
b1S ]E

]v

]

]E 1
]m

]v

]

]m
1

]^c&
]v

]

]^c& D K Iv i

V L . ~41!

In a previous work,16 this factor is treated approximately as a
step function

]^c&
]v

52
I

V
b ~banana!,

]^c&
]v

50 ~passing!,

~42!

in the SOW limit. However, the estimation above needs
some explanations. Note that]^c&/]v can be decomposed as
a1v1a2b. SinceV•v5w•v50, we need to retain only theb
component of the derivative. Noting Eqs.~23! and ~25!, we
obtain
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~12d* !
]^c&
]v

52
I

V
~12Dc!b, ~43!

where

Dc52
ev i

I

]

]m K Iv i

V L . ~44!

For the convenience of notation, we introduce a factorg as
follows:

]^c&
]v

52g~z,u;s t!
I

V
b. ~45!

Later, it is shown that we do not need the explicit form
of Dc to calculate transport coefficients, as pointed out in
Ref. 14, and the estimation in Eq.~42! works well in the
SOW limit.

IV. NEOCLASSICAL FLUXES

A. Derivation of transport equation

We now expand the reduced kinetic equation~15! by a
small ordering parameter

db[
D r

L
!1, ~46!

whereD r is a typical orbit width andL is a typical gradient
scale length of plasma pressure. ThoughD r for ions becomes
large in the near-axis region, the condition~46! can be satis-
fied sinceL also becomes large there.

The ordering we put in Eq.~15! is as follows.] f̄ /]t is
assumed to beO(db

2), often called ‘‘transport ordering.’’ For
the parallel flow, we use a plausible ordering thatui i /v thi

;O(db). Concerning partial derivatives]/]z, ]/]E, and
]/]m are treated asO(db

0), while ]/]^c&;O(db
1). The col-

lision operator is then expanded indb as C̄5C̄(0)1dbC̄(1)

1db
2C̄(2)

¯ . With the expansionf̄ 5 f̄ 01dbf̄ 11db
2 f̄ 2¯ , the

O(db
0) part of Eq.~15! for ion becomes

C̄i
(0)~ f̄ i0!5

1

Jc

]

]m

Jcn i

2
F K ]m

]v
•V•

]m

]v L • ] f̄ i0

]m
G50. ~47!

Because (]E/]v)•V50, only them derivative appears in Eq.
~47!. Then, any distribution functionf̄ i0 independent ofm is
the solution of this equation. However, we adopt here the
averaged collision operator of its exact form shown in Eq.
~29! for C̄i

(0) . Then, the solution off̄ i0 becomes the local
Maxwellian16

f̄ i05n̄i S mi

2pTi
D 3/2

expF2
E2eiF

Ti
G , ~48!

wheren̄i , Ti , andF are defined as functions of^c&.
The definition ofn̄i is not equal to the flux-surface av-

eraged densityni(c). First, consider the particle number per
unit ^c& as follows:

Ni~^c&!5(
s t

E dE dm Jcf̄ i0~E,m,^c&;s t!. ~49!

Then,n̄i(^c&) is defined as

n̄i5
dc

dVU
c5^c&

Ni~^c&!ln~^c&!, ~50!

whereV is the volume enclosed by ac5const surface. The
numerical factorln is given by

ln~^c&!5
dV

dc S 2pTi

mi
D 3/2

3S (
s t

E dE dm Jc expF2
E2eiF

Ti
G D 21

.

~51!

If ^c& is away from the magnetic axis and the orbit width is
narrow, ln→1 and n̄i(^c&).ni(c). When approaching
^c&→0, however,ln becomes large because the integral re-
gion in the~E,m! plane is small there. Note thatNi is nearly
proportional toln

21 near the axis, assuming that the density
profile in the real space is flat in the ranger ,r p . This as-
sumption is valid when considering the core region with
ITB. Then, it is a simple and plausible assumption that
n̄i(^c&).ni(c5^c&), even in the near-axis region.

Before proceeding to theO(db
1) equation, let us consider

the order expansion of the momentum-restoring term in Eq.
~38!. Sinceui i and f iM vary along a particle orbit, we expand
it as

ui i f iM

Ti
U

(c,u,v)

[
I

B

B0ui i

I 0Ti~^c&!
f̄ i0~z!1D i~z,u! f̄ i0~z!.

~52!

Here,ui i(^c&) is the lowest-order approximation ofui i cho-
sen properly so thatD i becomesO(db

2). The reason why we
expand it in this way is an analogy with the fact that the
neoclassical flux in the radial direction, in Eulerian represen-
tation, is proportional not tô ui i&c , but to ^Iui i /B&c ,5

where^¯P&c means the flux-surface average. Then, substi-
tuting Eq.~52! into Eq. ~38! yields

C̄i~ f̄ i !5
1

Jc

]

]z
•

Jcn i

2
F K ]z

]v
•V•

]z

]vL ] f̄ i

]z

2
miB0ui i

I 0Ti
K I

B

]z

]v
•wL f̄ i02mi K ]z

]v
•wD i L f̄ i0G .

~53!

Now consider theO(db
1) equation of kinetic equation

C̄i
(0)( f̄ i1)52C̄i

(1)( f̄ i0), or written explicitly

n i

Jc

]

]m
FJcmK miv i

2

B L ] f̄ i1

]m
G

52
n i

Jc

]

]m
JcmF K Ig

V i
v i L ] f̄ i0

]^c&
1

miV i0ui i

I 0Ti
K Iv i

V i
L f̄ i0G .

~54!

To solve Eq.~54! for f̄ i1 , it is rewritten in terms of driving
forcesFk as
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C̄i
(0)~ f̄ i1!5

f̄ i0

Jc
(
k51

3

Fk

]ak

]m
, ~55!

where

F15
d ln n̄i

d^c&
1

ei

Ti

dF

d^c&
, ~56a!

F25
d ln Ti

d^c&
, ~56b!

F35
miV i0ui i

I 0Ti
, ~56c!

and

a152Jcn im K Ig

V i
v i L , ~57a!

a252S ci
22

3

2D Jcn im K Ig

V i
v i L , ~57b!

a352Jcn im K Iv i

V i
L . ~57c!

Introducing the perturbed distribution functiongk(E,m,^c&)
which satisfies

C̄i
(0)~gk!5

f̄ i0

Jc

]ak

]m
, ~58!

f̄ i1 can be expressed as

f̄ i15 (
k51

3

gkFk . ~59!

Thus, the first-order equation is found to have a similar form
to that by Bernsteinet al.,14 though we successfully include
the momentum-restoring term by introducing an additional
driving forceF3 .

Next, considerO(db
2) part of the reduced kinetic equa-

tion

] f̄ i0

]t
5C̄i

(2)~ f̄ i0!1C̄i
(1)~ f̄ i1!1C̄i

(0)~ f̄ i2!⇔ ] f̄ i0

]t
2

1

Jc

]

]^c&
Jcn i

m

ei
F K I 2

V i
g2L ] f̄ i0

]^c&
1

miV i0ui i

I 0Ti
K I 2g

V i
L f̄ i01 K Ig

V i
v i L ei

] f̄ i1

]m
G

2
1

Jc

]

]m
Jcn imF K Ig

V i
v i L ] f̄ i1

]^c&
1 K mi

B
v i

2L ] f̄ i2

]m
1mi^v iD i& f̄ i0G50. ~60!

By taking a moment withE and m, we obtain the particle
transport equation in thêc& direction

]

]t
Ni1

]

]^c&
J1

i 50, ~61!

where the particle fluxJ1
i is given as

J1
i 5 (

k51

3

~S1k
ex1S1k

im!Fk . ~62!

An important point is that the transport coefficients are sepa-
rated into the explicit and implicit parts,Sjk

ex and Sjk
im ,

respectively.14 They are given as follows:

S11
ex52H n i

m

ei
K I 2

V i
g2L , f̄ i0J , ~63a!

S12
ex52H n i

m

ei
K I 2

V i
g2L ,S ci

22
3

2D f̄ i0J , ~63b!

S13
ex52H n i

m

ei
K I 2g

V i
L , f̄ i0J , ~63c!

S1k
im5H a1

Jc
,
]gk

]m J , ~63d!

where the inner product is defined as$a,b%
[(s t

*dE dmJcab.

To obtain the energy transport equation, the moment to
be taken is*dE dm JcW, whereW5E2eiF(^c&). Define
here

Qi[(
s t

E dE dm JcW f̄i0 , ~64!

which is the sum of the kinetic energy of particles with the
same ^c&. The use of partial integrals yields the energy
transport equation

]

]t
Qi1

]

]^c& FJ2
i 1

3

2
J1

i Ti G52eiJ1
i dF

d^c&
, ~65!

whereJ2
i represents the conductive ion heat flux

J2
i

Ti
5 (

k51

3

~S2k
ex1S2k

im!Fk , ~66!

where

S21
ex52H n i

m

ei
K I 2

V i
g2L ,S ci

22
3

2D f̄ i0J , ~67a!

S22
ex52H n i

m

ei
K I 2

V i
g2L ,S ci

22
3

2D 2

f̄ i0J , ~67b!

S23
ex52H n i

m

ei
K I 2g

V i
L ,S ci

22
3

2D f̄ i0J , ~67c!
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S2k
im5H a2

Jc
,
]gk

]m J . ~67d!

The right-hand side of Eq.~65! describes work done by the
radial ion current.

B. Properties of transport coefficients

An important property of the transport coefficientsSjk is
the symmetry of the implicit partSjk

im5Sk j
im . This can be

shown by as follows. First, integrating both sides of Eq.~58!
by m yields

a j5
Jcn i

f̄ i0

K mv i
2

B
L m

]gj

]m
, ~68!

where the integral constant is zero from the boundary condi-
tion. Then, one obtains

Sjk
im5(

s t

E dE dma j

]gk

]m

5(
s t

E dEdmJc

n i

f̄ i0

K mv i
2

B
L m

]gj

]m

]gk

]m
. ~69!

This equation is symmetric inj and k; therefore, implicit
coefficients are symmetric.

One can also find that the explicit part has a symmetry
S12

ex5S21
ex . Then, it is natural to seek the third flux which

satisfies the symmetryS3k
ex5Sk3

ex

J3
i [(

k51

3

~S3k
ex1S3k

im!Fk . ~70!

Now, we show that the proper definition of the third flux is

J3
i [

2n̄iK1

t i
K Iui i

V L
c

dV

dc
. ~71!

Noting that^¯&c means the flux-surface average, we have

J3
i 54p2E

0

2p du

B•¹u

I

V i
E dE8 dm8

B*
mi

2uv i8u
n i~v8!v i8 f iU

c5^c&

5
4p2

mi
2 E

0

2p du

B•¹u

I

V i
E dE8 dm8 dc8 d~^c&2c8!s i8B* f i

]

]m8
~n im8!

52
4p2

mi
2 E

0

2p du

B•¹u

I

V i
E dE8 dm8 d^c&8U ]c

]^c&
Us i8B* n im8

]

]m8
f i .

Next, the distribution function is expanded as

] f i

]m
.

]

]m
F f̄ i02Dc

] f̄ i0

]^c&
1 f̄ i1G5

Ig

eiv i

] f̄ i0

]^c&
1

] f̄ i1

]m
, ~72!

where

Dc[c2^c&5
Iv i

V i
2 K Iv i

V i
L ~73!

represents the deviation from an instantaneous particle position to its averaged flux surface, and we use the relation
]^c&/]v52]Dc /]v. Using Eqs.~20! and ~21!, and changing the order of integrals, we have

J3
i 52(

s t

E dE dm
4p2tp

mi
2

u12d* u
n im

tp
R du

u̇

Iv i

V i

]

]m
f̄ i52(

s t

E dE dm JcF n im

ei
K I 2g

V i
L ] f̄ i0

]^c&
1n i K Iv i

V i
L m

] f i1

]m
G . ~74!

Note here that the implicit coefficientsS3k
im are written as

follows, by definition:

S3k
im[H a3

Jc
,
]gk

]m J 52(
s t

E dE dm Jcn i K Iv i

V i
L m

]gk

]m
. ~75!

Then, comparing Eqs.~74! and ~75!, one finds that the ex-
plicit coefficients forJ3

i are given as follows:

S31
ex52H n i

m

ei
K I 2g

V i
L , f̄ i0J 5S13

ex , ~76a!
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S32
ex52H n i

m

ei
K I 2g

V i
L ,S ci

22
3

2D f̄ i0J 5S23
ex , ~76b!

S33
ex50. ~76c!

Thus we obtain the 333 symmetric coefficients for both the
explicit and implicit parts.

To close transport equations, we must eliminate the ad-
ditional driving forceF3 introduced to include the parallel
momentum balance. For this purpose, we chooseui i as fol-
lows:

ui i[
V i0

I 0^h
2&c

K Iui i

V L
c

. ~77!

The factor^h2&c , whereh[B0 /B, is needed to retain the
ambipolarity in the SOW limit, as shown in Appendix C. By
using this definition, Eq.~70! can be solved forF3 . It yields

F352b~S13F11S23F2!, ~78!

b52S n̄iK1

t i
I 0

2r i0
2 dV

dc
^h2&c2S33

imD 21

, ~79!

where Sjk5Sjk
ex1Sjk

im is the total transport coefficients. Fi-
nally, neoclassical fluxes are rewritten in the following form:

F J1
i

J2
i /Ti

G5FA11 A12

A21 A22
G•FF1

F2
G , ~80!

where

A115S112bS13
2 , ~81a!

A125A215S122bS13S23, ~81b!

A225S222bS23
2 . ~81c!

Thus, the resulting transport matrixAjk in Lagrangian for-
mulation is shown to be Onsage symmetry, the same as in
Eulerian formulation.

Next, let us calculate the total coefficientsSjk . The per-
turbed distribution functionsgk are needed to calculate the
implicit part. From Eq.~68!, we obtain

]g1

]m
52

^Igv i /V i&

^miv i
2/B&

f̄ i0 , ~82a!

]g2

]m
52S ci

22
3

2D ^Igv i /V i&

^miv i
2/B&

f̄ i0 , ~82b!

]g3

]m
52

^Iv i /V i&

^miv i
2/B&

f̄ i0 . ~82c!

From here on, we use the approximationI (c)5I 05R0B0 ,
which corresponds to the low-b plasma. Forj , k51, or 2,
using Eq.~44! yields

2Sjk5
I 0

2

eiV i0
H n im

~12d* !2 S ^h~12Dc!
2&2

^hv i~12Dc!&
2

^hv i
2& D ,S ci

22
3

2D j 1k22

f̄ i0J
5

3pI 0
2n̄ir i0

2 qR0

8t iB0
(
s t

E dx dl0

t̄p

~12d* !
ci S ci

22
3

2D j 1k22

y~ci !l0S ^h&2
^hv i&2

^hv i
2& D[

3pI 0
2n̄ir i0

2 qR0

8t iB0
S̄jk , ~83!

where x5exp(2E/Ti), l05mB0 /E, and t̄p5tpv thi /qR0 ,
respectively. We callS̄jk the normalized transport coeffi-
cients. In the equation above, the terms which are propor-
tional to Dc and Dc

2 are exactly canceled. In a similar way,
one has

S̄j 352(
s t

E dx dl0t̄pci S ci
22

3

2D j 21

y~ci !l0

3S ^h&2
^hv i&2

^hv i
2& D , ~84!

S̄33
im5(

s t

E dx dl0t̄pciy~ci !l0

^hv i&2

^hv i
2&

. ~85!

Note that Eq.~83! differs from Eq.~84! only by the factor
(12d* )21.1. Therefore, this difference is neglected in the
final calculations, and the approximationsS135S11 and S23

5S12 are used. As a complement, we define

b̄52S 8B0K1

3pqR0

dV

dc
^h2&c2S̄33D 21

, ~86!

so that Eq. ~78! can be rewritten asF352b̄(S̄13F1

1S̄23F2).
In the SOW limit,^hv i&250 for banana particles, while

^hv i&2.^hv i
2& for passing ones. Therefore, transport coeffi-

cients other thanS33 are determined mainly by the banana
part. Because of this separation of the contribution to trans-
port between banana and passing, the approximation of
]^c&/]v as in Eq.~42! used in Ref. 16 yields the same result
as the SOW limit of Eqs.~83! to ~85!. However, by using the
exact solution forSjk , we can include the contribution for
neoclassical transport not qualitatively, but quantitatively,
from all the orbit types of particles appearing in the near-axis
region. The magnitude of contribution of each particle is
evaluated by the factor̂h&2^hv i&2/^hv i

2&.
In the present analysis, we improved the treatment of the

collision term to keep the momentum conservation low.
Since we consider only the ion–ion self-collisions here,J1

i
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must vanish in the SOW limit. It is shown in Appendix C
that A11 andA12 become zero in this limit, and thereforeJ1

i

vanishes intrinsically. Thus, Lagrangian transport theory ap-
plied to the region away from the axis, where potato particles
do not appear and the SOW limit is valid, reproduces con-
ventional Eulerian transport theory.

C. Comparison with Eulerian transport theory

The representation of fluxes in Eqs.~61! and ~65! from
Lagrangian formulation are different from those in the stan-
dard neoclassical transport theory based on Eulerian repre-
sentation. The former describes the change inNi and Qi ,
which are functions of averaged particle position^c&, while
the latter describes the change inni and pi5niTi through
radial fluxes averaged on a magnetic surfacec. Then, the
comparison of neoclassical flux between these two represen-
tations is not straightforward. Let us consider this problem
here.

In preparation, we introduce a normalizing factor forQi

as follows:

lq~^c&![ 3
2n̄iTiV8Q i

21

5
3Ti

2 S 2pTi

mi
D 3/2

V8S (
s t

E dE dm JcW

3expF2
W

Ti
G D 21

, ~87!

whereV85dV/dc(c5^c&). lq has a similar property toln

in Eq. ~51!. The particle flux and the heat flux are redefined
as

G i[J1
i /V8, ~88a!

qi[J2
i /V8, ~88b!

so that they represent fluxes per unit cross section. Note that
qi differs from its general definition byG iTi since we adopt
F25d ln Ti /d^c& as a driving force rather than the pressure
gradient. Then, transport equations are rewritten as follows:

]n̄i

]t
1

ln

V8

]

]^c&
~V8G i !50, ~89!

]

]t S 3

2
n̄iTi D1

lq

V8

]

]^c& FV8S qi1
3

2
G iTi D G

52lqeiG i

dF

d^c&
, ~90!

where we assume that the time variation ofln andlq is slow
compared with that ofNi andQi . These transport equations
have the same dimensions as those of a standard Eulerian
representation.4 In the SOW limit,ln andlq become unity,
and Eqs.~89! and~90! reduce to the Eulerian representation.

As will be shown in Sec. V C,ln andlq is nearly unity
around the region̂r &;r p , though the finiteness of the po-
tato width significantly affects the transport coefficients
there. Only in the region̂r &&qr i0 do they become much
larger than unity. Then, the qualitative differences between

Euler and Lagrangian representations forG i and qi are not
significant when considering the neoclassical transport
around^r &;r p .

V. CALCULATION OF THERMAL CONDUCTIVITY

A. Definition of collisionless regime

In this section, we calculate the ion thermal conductivity
in the near-axis region. In preparation, let us reconsider the
definition of the collisionless regime in which the Lagrang-
ian approach is valid.

Usually, the collisionless~or banana! regime is defined
as follows:

tb;
qR0

v thiAe
, nc

eff;
n i

e
, ⇒dc;

n iqR0

v thie
3/2!1, ~91!

since banana particles exist in the rangeuv iu,vAe. In Eule-
rian representation, collisions cause diffusion only in the ve-
locity space, and then the collisionless regime can be defined
as above. In Lagrangian representation, however, collisions
bring about diffusion directly in thêc& direction through
the factor]^c&/]v i . This means that the effect of scattering
on each particle differs according to this factor.

Remember here that, as mentioned in Sec. IV B, trans-
port coefficients can be obtained by using the estimation that

]^c&
]v i

;H 2
I

V
~banana!,

0 ~well-passing!.

~92!

In the near-axis region, potato particles can be assumed to
have]^c&/]v i;2I /V, like bananas. The transition of orbit
topology of a potato particle occurs when their averaged ra-
dial position changes as large as its orbit widthD r;r p , or

Dc;
I

V0
S qr i0

R0
D 1/3

. ~93!

To changê c& as large asDc , pitch-angle scattering of the
magnitude

Dv i;Dc Y ]^c&
]v i

5S qr i0

R0
D 1/3

v thi

is needed. Therefore, with the analogy of Eq.~91!, the effec-
tive collision frequency for potato ions can be defined as

nc
eff5

1

t i
S R0

qr i0
D 2/3

. ~94!

On the other hand,tp for potato particles is estimated as

tp
pot;

qR0

v thi
S R0

qr i0
D 1/3

. ~95!

From Eqs.~94! and ~95!, we obtain

dc
pot5nc

efftp
pot!1⇔Ti@

Zi
2~ n̄iB0R0

2!2/5

~mi /mp!1/5 , ~96!

whereTi (keV), n̄i (1020 m23), andmp is the mass of pro-
ton. For example, if B054T, R054m, and n̄i51
31020 m23 for hydrogen ion, thenTi@5 keV is needed for
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the collisionless assumption. Note that the criterion Eq.~96!
corresponds to that from the usual definition ofdc in Eq. ~91!
evaluated atr .r p , as mentioned in Ref. 13.

In reality, barely transit potato particles have much
longer tp than the estimation in Eq.~95!. Then, particles
around the transition boundaryl2 in Fig. 3 break the colli-
sionless assumptiondc!1. Treating these collisional par-
ticles in Lagrangian transport theory like the banana-plateau
transition in the standard Eulerian theory4 is not considered
here. Therefore, our calculation corresponds to the collision-
less limit of neoclassical transport.

B. Ion heat flux

In Eulerian transport theory, the ion heat flux is ex-
pressed as follows:

qi

Ti
52nix i

r d

dr
ln Ti , ~97!

wherex i
r is the ion thermal conductivity in ther direction.

Here,qi in the form as above is the result of~i! neglecting
ion–electron collisions, and~ii ! G i50 because of the mo-
mentum conservation in ion–ion self-collisions. In the La-
grangian approach, however, the conditionG i50 is not in-
trinsic. In reality, the momentum-restoring termS13F3 in J1

i

cannot exactly cancelS11F11S12F2 , especially in the region
near the magnetic axis. This is because of the nonlocal nature
of Lagrangian formulation, and partially because only the
lowest order expansion ofui i is included. In the present cal-
culation, we rewrite the transport equation in Eq.~80! to
eliminateF1

qi
^r &

Ti

5
S̄12

S̄11

G i
^r &2n̄ix i

^r &
d

d^r &
ln Ti , ~98!

x i
^r &52

3q2r i0
2

32p^e&2t i
F S̄222

S̄12
2

S̄11

G , ~99!

whereq, r i0 , andt i are evaluated atr 5^r &, and we change
the radial coordinate from̂c& to ^r &. The ion heat conduc-
tivity x i

^r & defined in this way is compared tox i
r , thoughG i

^r &

does not vanish here.
It is well-known that x i

r}q2r i0
2 /(e3/2t i) in Eulerian

theory, while the apparent dependence ofx i
^r & is

q2r i0
2 /(^e&2t i). However,S̄jk away from the magnetic axis

is proportional toA^e&, andx i
^r & has the same dependency as

x i
r there.

C. Calculation result and discussion

Numerical calculation of transport coefficients in Eq.
~83! is implemented by using the Monte Carlo integration
method. In the calculation, test particles which have a given
^r & are generated randomly and uniformly in the phase space
(x,l0 ;s t), wherex andl0 are defined in Sec. IV B. And, all
the functions in the integrand ofS̄jk , which we write
F jk(x,l0 ,^r &;s t) here, are calculated by tracing each par-
ticle orbit. Then, transport coefficients at^r & are given as

S̄jk~^r &!5 lim
N→`

1

N (
n51

N

F jk~xn ,l0n ,^r &;s tn!, ~100!

where N is the total number of test particles and
(xn ,l0n ;s tn) is the position of thenth test particle in the
phase space. We can include all the types of orbit to transport
coefficients. Note that we approximate 12d* 51 so that
S115S13 andS125S23.

As an example, we calculate the ion thermal conductiv-
ity x i

^r & under the conditionsB054T, q53, Ti520
keV, andn̄i5131020 m23. The radial electric fielddF/dr
is neglected. In this case, typical potato particles appear in
the region^r &&r p50.244 m. According to Eq.~96!, the
plasma is well in the collisionless regime. The calculation
result of x i

^r & is plotted in Fig. 6. For comparison,x i
r by a

standard Eulerian theory in the banana regime4 is also plot-
ted. Note thatx i

r is obtained by regardingr as ^r &.
A significant reduction inx i

^r & can be seen in the region
^r &&r p . The main reason of this reduction, explained in the
Lagrangian approach, is that potato particles, which mainly
contribute to the radial transport, cannot exist in the region
^r &&r p/4 when observed in the COM space (E,m,^r &), as is
shown in Fig. 3. The FOW effect is thus included in the
calculation by reflecting the real population of potato par-
ticles near the magnetic axis.

In Fig. 7, lq defined in Eq.~87! is plotted. One can see
that lq becomes much larger than unity only on the inner-
most point̂ r &52qr i050.03m in this case. As mentioned in
Sec. IV C, simple comparison ofx i between Lagrangian and
Eulerian formulations is possible as long aslq.1. Then, it
can be said that the reduction of the ion thermal conductivity
occurs not only when it is observed in the^r & coordinate, but
also in the real space aroundr;r p/2. On the other hand, it
will be an underestimation thatx i;0.1 at ^r &50.03m be-

FIG. 6. The ion thermal conductivity normalized byq2r i0
2 /t i . Solid line is

the result from our Lagrangian formulation. Dashed line is from standard
Eulerian theory by Hinton and Hazeltine.
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cause it is almost the same level as the classical transport
x i;r i0

2 /t i , and also because oflq@1 there.
In Fig. 7, we also plotA11/A22, which is approximately

the ratio ofG i to qi . Away from the axis it is almost zero and
then G i can be neglected, while it becomes finite around
^r &5r p/2. It is the FOW effect that cause the finite particle
flux by ion–ion collisions. Since the electron particle flux is
negligible compared to the ion flux, radial electric fieldEr

will develop to satisfy ambipolarityG i501O(Ame /mi).
12

In our present formulation, however, the ambipolar electric
field cannot be calculated correctly, because it requires solv-
ing dEr /dt from the particle flux equation, which in turn
affects transport coefficientsAjk(^r &,t) through the orbit-
squeezing effect of potato particles.23 Future work will de-
termine neoclassicalEr in the core region.

Next, to investigate the degree of contribution from each
orbit type to transport coefficients, we plot in Fig. 8 the
factor H i5^h&2^hv i&2/^v i

2& for particles at^r &50.12 m
andE520 keV. SinceS̄jk containsH i , one can see that not
only banana particles but also all the potato particles, that is,
kidney, outer-circulating, and inner-circulating particles ap-
pearing around the transition boundary, contribute transport
to the same degree. In the numerical calculation, the factor
H i is evaluated without any approximation by using the
Monte Carlo integration method.

The reductive tendency ofx i in the near-axis region is
the common feature of recent simulation results.10–13 Our
x i

^r & also shows a similar dependence on^r & to these simu-
lations, for example, to the fitting formula by Linet al.based
on a simple random-walk model. This suggests that the neo-
classical transport in the near-axis region can be explained
by the random-walk diffusion process of the potato-center
^r &. However, there is a difference between ours and the
others in that the reduction ofx i compared to the standard
neoclassical value begins atr;r p in our calculation, while it
begins from a somewhat more outer positionr;2r p in the
other simulations. This may be caused by the differences of

the profiles, of the treatment of collision terms, and of the
algorithms used in each calculation. More detailed compari-
son between Lagrangian formulation andd f simulations will
be done in a future work.

VI. SUMMARY

Lagrangian formulation of neoclassical transport theory
is applied to the near-axis region^r &;r p to include the ef-
fect of potato particles in the calculation of ion thermal con-
ductivity. In a collisionless regime plasma, a significant re-
duction ofx i compared to the standard neoclassical level is
found as shown in Fig. 6. By introducing the factorlq , we
show that the direct comparison ofx i between Eulerian and
Lagrangian representations is possible atr;r p .

Since the reduction ofx i occurs from^r &;r p}q2/3, the
finiteness of potato orbit on neoclassical transport will be
important in a reversed-shear configuration in which theq
value becomes very high at the near-axis region.24 The de-
velopment of ambipolar radial electric fieldEr and its effect
on x i , will be studied in a future work.

In the present article, we show that the Lagrangian trans-
port theory is of practical use in treating transport phenom-
ena in which the orbital property of particles is really impor-
tant. This approach will also be useful to analyze other
problems treating FOW effects, such as the bootstrap current
near the magnetic axis, or the neoclassical transport around
the internal transport barrier in tokamaks where the gradient
scale length of plasma pressure becomes comparable to typi-
cal banana width.

FIG. 7. Dependence oflq defined in Eq.~87! ~solid line! and the ratio of
transport coefficientsA11 /A22 ~dashed line! on ^r &.

FIG. 8. H i5^h&2^hv i&2/^hv i
2& vs l0 for ions with E520 keV at ^r &

50.12 m. The transition boundary is atl050.965. Abbreviations of orbit
type are the same as in Figs. 3 and 4.
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APPENDIX A: ESTIMATION OF d*
From the definition ofd* , we have to evaluate

d* 5S ]

]c
1

]u*

]^c&

]

]u Da* , ~A1!

where a* 5Iv i /V evaluated at the averaging point (c,u)
5(^c&,u* ). The difficulty lies in the evaluation of
]u* /]^c&. First, let us consider the case for orbits which
have the turning points ofu̇, that is, for banana, outer-
circulating, and inner-circulating orbits. The averaging point
of these orbits can be approximated by the turning points.
Therefore, from the equation ofu̇ in Eq. ~21!, ]a* /]c51
must be satisfied on the averaging point. Then, we have

]u*

]^c&
.2

]

]c S ]a*
]c D

]

]u S ]a*
]c D . ~A2!

Substituting Eq.~A2! into ~A1!, we have

d* 5

mv i
2S ]B

]c

]2B

]c]u
2

]B

]u

]2B

]c2D
mv i

2
]B

]c

]2B

]c]u
1m

]B

]u
S ]B

]c
D 2S mB

mB1mv i
2 2

2mv i
2

mB
D .

~A3!

Note that Eq.~A3! is evaluated at the averaging point. Since

v i.0 at the turning point ofu̇, one can see thatd* .0 for
banana and outer-, inner-circulating orbits. As concerns kid-
ney orbits, we can evaluate]u* /]^c& by approximating the
averaging point by the turning point ofv i . Then, one also
finds thatd* can be neglected for kidney orbits.

For passing particles, we cannot determine the averaging
point u* in a simple way as above. However, for well-
passing particles,]u* /]^c& in Eq. ~A1! can be negligible,
and one can estimate

d* .
]a*
]c

;a*
1

B

]B

]c
;

qr

^r &
, ~A4!

which is negligible when considerinĝr &;r p@qr.
Thus, the approximation 12d* .1 is ensured for all

types of orbit.

APPENDIX B: INTEGRAL IN THE „E,m… PLANE

In the derivation of transport equations, integrals in the
~E,m! plane appear. We prove some properties used in the
integral here. Consider a integral of a functionF

(
s t

E dEE dm Jc~E,m,^c&;s t!F~E,m,^c&;s t!, ~B1!

whereJc andF also depend on the orbit types t . The inte-
gral region in them direction is shown in Fig. 9.m1 , m2 , and
m3 correspond to the boundariesl1, l2, and l3 in Fig. 3,
respectively. The kidney region is placed betweenm2 and
m3 , and it is overlapped with a part of the banana and co-
passing regions. The integral path inm is taken in the direc-
tion of the arrows in Fig. 9.

To use Gauss’ theorem to take moments of the reduced
kinetic equation~60!, some boundary conditions are needed.
First, consider the boundarym50. Here, note that all the
integrand having the form]/]m in Eq. ~60! is proportional to
m. Then, the surface integral vanishes there. Second, con-
sider the boundarym3 , where a copassing particle moves
into a kidney region. This transition occurs continuously,
since the difference between kidney and copassing orbits is
only that the former has turning point ofv i and the latter
does not. Then, we have

lim
m→m3

Jc~m;s t5P1 !5 lim
m→m3

Jc~m;s t5K !. ~B2!

Therefore, the surface integral is canceled atm3 between
copassing and kidney, since any physical value in the inte-
grandF is also continuous on the boundary.

On the boundarym2 , a banana particle bifurcates into a
kidney or a counterpassing particle as shown in Fig. 5. At the
limit m5m2 , the particle is stagnated at (r ,u)5(^r &,p). All
the values contained in the integrandF are then evaluated at
the stagnation point. On the other hand, the JacobianJc be-
comes infinity atm2 as is pointed out in Sec. III. Noting that
the kidney and counterpassing orbit at the boundary corre-
spond to outer- and inner sections of a banana orbit, we have

lim
m→m2

Jc~m;s t5B!

5 lim
m→m2

@Jc~m;s t5K !1Jc~m;s t5P2 !#. ~B3!

FIG. 9. Integral path in them direction. Abbreviations of orbit types are the
same as used in Figs. 3 and 4.
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Therefore, the integrandF for each orbit type is required to
be continuous on the boundary so that the surface integral on
the boundarym2 can be canceled between banana, counter-
passing, and kidney.

The last condition is on them5m1 corresponding to
stagnated outer-circulating orbits. In Eq.~60!, one can see
that all the terms within the]/]m operator havev i in the
averaged operator^¯P&. As mentioned in Sec. II,v i is not
exactly zero for stagnated orbits when particle orbits are
solved strictly. Then, there remains a small contribution from
the surface integral in them direction when one takes the
moment of Eq.~60! to obtain Eqs.~61! and ~65!. However,
this contribution vanishes in the SOW limit, since the stag-
nated condition isv i50 in this limit. Therefore, the contri-
bution from the surface integral to]Ni /]t and ]Qi /]t is
considered to be negligible in this paper.

As a consequence, the perturbed distribution functiongk

must have a continuous derivative]gk /]m on the boundary
m2 andm3 . This fact is used in Eq.~82!.

APPENDIX C: TRANSPORT COEFFICIENTS IN THE
SOW LIMIT

To show that the particle fluxJ1
i vanishes in the SOW

limit, consider the transport coefficientsS̄11 and S̄33
im away

from the magnetic axis. We assume a model magnetic field
B5B0(12e cosu) as in Sec. II. Orbit types considered here
are passing and banana in a usual sense, and the factor
u12d* u becomes unity in this limit. From the definition of
the normalized transport coefficients Eqs.~83! and~85!, one
has

S̄335S̄111(
s t

E dx dl0 t̄pciy~c!l0^h&. ~C1!

Since u̇5v ib•¹u in the SOW limit, the integral above can
be calculated as

(
s t

E dx dl0 t̄pciy~c!l0^h&

5(
s t

2v thi

qR0
E

0

`

dc ci
2 exp2ci

2
y~c!

3E
0

11^e&
dl0 l0 R du

v ib•¹u

B0

B

5(
s i

2B0

qR0
K1E

0

2p du

B•¹u E0

h

dl0

l0

A12l0 /h
.

Therefore, we obtain

S̄335S̄111
8B0K1

3pqR0

dV

dc
^h2&c , ~C2!

where we have used the flux-surface average

^h2&c5
1

2p

dV

dc E
0

2p du

B•¹u
h2.

And, combining Eqs.~86! and ~C2! yields

b̄5S̄11
21 . ~C3!

SinceA11}S̄11(12b̄S̄11) andA12}S̄12(12b̄S̄11), the trans-
port matrix Ajk other than theA22 component vanishes in-
trinsically. Therefore, ion particle flux does not occur in La-
grangian formulation in the SOW limit when only ion-ion
collision is considered.

Note here that, in the SOW limit, Eq.~83! for S̄jk be-
comes the same form as Eq.~80! in Ref. 25, sincê hv i&
50 for bananas in this limit. Then, the ion thermal conduc-
tivity obtained from our formulation reproduces the result
from Eulerian formulation in the SOW limit. Though this
property has already been proved by Bernsteinet al., we
succeed in introducing the momentum-conservation nature in
Lagrangian formulation.
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