
Plasma and Fusion Research: Regular Articles Volume 6, 1403001 (2011)

Linear Gyrokinetic Analyses of ITG Modes and Zonal Flows in
LHD with High Ion Temperature

Masanori NUNAMI1), Tomo-Hiko WATANABE1,2), Hideo SUGAMA1,2) and Kenji TANAKA1)

1)National Institute for Fusion Science, Toki 509-5292, Japan
2)The Graduate University for Advanced Studies (SOKENDAI), Toki 509-5292, Japan

(Received 16 September 2010 / Accepted 15 November 2010)

Ion temperature (Ti) gradient modes (ITG modes) and zonal flows for high Ti discharges in the Large Helical
Device (LHD) are investigated by linear gyrokinetic Vlasov simulation. In recent LHD experiments, high Ti

plasmas are generated by neutral beam injection, and spatial profiles of density fluctuations are measured by
phase contrast imaging (PCI) [K. Tanaka et al., Plasma Fusion Res. 5, S2053 (2010)]. The observed fluctuations
most likely propagate in the direction of the ion diamagnetic rotation in the plasma frame, and their amplitudes
increase with the growth of the temperature gradient. The results show the characteristics of ITG turbulence. To
investigate the ITG modes and zonal flows in the experiment, linear gyrokinetic simulations were performed in
the corresponding equilibria with different Ti profiles by using the GKV-X code [M. Nunami et al., Plasma Fusion
Res. 5, 016 (2010)]. The simulation results predict unstable regions for the ITG modes in radial, wavenumber,
and phase velocity spaces, in agreement with the PCI measurements. Thus, the fluctuations observed in the
experiment are attributed to ITG instability. The responses of the zonal flows show clear contrasts in different
field spectra that depend on the Ti profile and the radial position. In addition to the dependence on the field spectra,
the zonal flow residual levels are enhanced by increasing the radial wavenumber as theoretically predicted.
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1. Introduction
Achieving high ion temperature (Ti) in confinement

plasmas is one of the keys to realize a magnetic fusion re-
actor, and anomalous transport of the plasmas which can
be driven by drift wave plasma turbulence [1] is a critical
issue in fusion research. In recent Large Helical Device
(LHD) [2] experiments, high-Ti discharges (Ti ∼ 5.6 keV)
have been achieved by high-power neutral beam injec-
tion [3]. For better understanding of transport physics in
such experiments, quantitative comparisons should be con-
ducted between the experimental observations and com-
putational simulations including zonal flows which play a
significant role in regulating turbulent transport in toroidal
plasmas [4–6]. In fact, nonlinear gyrokinetic simulations
have shown that ion temperature gradient (ITG) turbulent
transport in LHD plasma is reduced when the zonal flow
generation is enhanced in the inward-shifted LHD config-
uration [7, 8].

Figures 1-(a) and (d) show the radial profiles of the
density and the ion and electron temperatures obtained
from the LHD high-Ti discharge of shot number 88343
[9, 10] in the low-Ti (t = 1.833 s) and high-Ti phases (t =
2.233 s), respectively. The spatial distributions of the den-
sity fluctuations were also measured by two-dimensional
phase contrast imaging (2D-PCI) [11]. Figures 1-(b) and
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(e) show the distributions of the density fluctuations in kθ-
ρ space, and Figs. 1-(c) and (f) show them in vlab-ρ space.
Here kθ is the poloidal wavenumber, vlab is the phase veloc-
ity in the laboratory frame, and ρ is the normalized minor
radius defined below Eq. (3) in the next section. From the
results, the positions in kθ-ρ space where the fluctuation
increases are obtained as

ρ
exp
peak ∼

{
0.8 - 1.0
0.6 - 0.8

,

and (kθρti)
exp
peak ∼

{
0.26 for low-Ti phase
0.45 for high-Ti phase

,

(1)

where the ion thermal gyroradius is defined as ρti ≡ vti/Ωi,
with the ion gyro frequency Ωi = eB/mic and the ion ther-
mal speed vti =

√
Ti/mi which is obtained from the Ti pro-

files in the experiment. For example, ρti ∼ 1.0 × 10−3 m
at ρ ∼ 0.9 in the low-Ti phase, and ρti ∼ 1.8 × 10−3 m at
ρ ∼ 0.7 in the high-Ti phase. The phase velocities of the
fluctuations in the E × B rotating frame (plasma frame),
v

exp
ph = vlab − vE×B, are given by

v
exp
ph ∼

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1.7 × 103 m/s
at ρ = 0.98 for low-Ti phase
−3.4 × 103 m/s

at ρ = 0.80 for high-Ti phase

, (2)

where the observed velocities in the laboratory frame are
vlab ∼ −1.1 × 103 m/s (low-Ti) and vlab ∼ −3.9 × 103 m/s

c© 2011 The Japan Society of Plasma
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Fig. 1 Radial profiles of electron density, ion temperature, and electron temperature ((a) and (d)), the density fluctuations in wavenumber
space ((b) and (e)), and phase velocity space ((c) and (f)), for low-Ti ((a), (b), and (c)) and high-Ti ((d), (e), and (f)) phases. Light
blue curves in (c) and (f) represent the E × B poloidal rotation velocities vE×B in the laboratory frame. Here, “i-dia” and “e-dia”
indicate the directions of ion diamagnetic and electron diamagnetic rotation in the laboratory frame, respectively. The plots are
cited from Ref. [10].

(high-Ti), and the poloidal E×B rotational velocities vE×B,
which are obtained by charge exchange spectroscopy and
plotted in Figs. 1-(c) and (f), are vE×B ∼ +0.6 × 103 m/s
(low-Ti) and vE×B ∼ −0.5 × 103 m/s (high-Ti). Here, the
minus sign of the velocities represents the direction of the
ion diamagnetic rotation. Thus, the large-amplitude fluc-
tuations observed in the plasma frame propagate in the di-
rection of the ion diamagnetic rotation, which is one of
the features of ITG modes, and the velocity in the high-Ti

phase is greater than that in the low-Ti phase. Therefore,
the experimentally observed fluctuations are considered to
be driven by ITG modes.

In this study, to investigate the characteristics of the
experimentally observed density fluctuations, we perform
linear gyrokinetic simulations in the equilibrium magnetic
field corresponding to the LHD discharge by using the
GKV-X code [12] and compare the simulation results with
the experimental observations. This paper is organized as
follows. In Sec. 2, we briefly describe GKV-X and the
basic equations employed in the calculation. In Sec. 3,
we show the linear simulation results for the ITG modes
and the zonal flow responses in the LHD experiment with
different Ti profiles and compare the results for the ITG
modes obtained from the simulations and the fluctuation
measurements. Finally, we present our conclusions in
Sec. 4.

2. GKV-X Code
GKV-X is a gyrokinetic Vlasov flux-tube code that

can handle the three-dimensional magnetic field corre-
sponding to experiments in non-axisymmetric systems
such as the LHD. GKV-X incorporates full geometrical in-
formation on the non-axisymmetric confinement field, as
well as the Fourier components of the field obtained from
the MHD equilibrium code VMEC [13] through coordinate
transformation into Boozer coordinates [14], {ρ, θB, ζB}.
The magnetic field strength is represented in the coordi-
nate system as

B =
nmax∑
n=0

B0n(ρ) cos nζB

+

mmax∑
m=1

nmax∑
n=−nmax

Bmn(ρ) cos(mθB − nζB),

(3)

where the flux labeling index (or normalized minor radius)
is defined by ρ ≡ √Ψ/Ψa, with the toroidal magnetic flux
Ψ = Baxr2/2 at the minor radius r and Ψa at the last closed
surface (r = a). Here, Bax is the field strength at the mag-
netic axis, Bmn(ρ) is the Fourier component of the magnetic
field with the poloidal and toroidal mode numbers (m, n),
and the maximum mode numbers for poloidal and toroidal
directions used in the VMEC calculation are denoted by
mmax and nmax, respectively. From the information of the
flux surface shapes obtained using the VMEC code, the
metric tensor can be obtained. In addition, the Jacobian on
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the flux surface is also obtained from the covariant compo-
nents of the magnetic field, Bθ, Bζ , in Boozer coordinates,

√
gB = (∇ρ × ∇θB · ∇ζB)−1

=
Ψ ′

B2

(
Bζ + q−1(ρ)Bθ

)
,

(4)

where q is the safety factor, and the prime symbol repre-
sents the derivative with respect to the flux label ρ, i.e.,
A′ = dA/dρ. In the code, we used the local flux-tube
model [15] with the field-aligned coordinates {x, y, z} =
{r − r0, (r0/q0)

[
q(ρ)θB − ζB] , θB} and the safety factor q0

at the minor radius r = r0 defined by the toroidal mag-
netic flux Ψ (r0) = Baxr2

0/2. Then, we regard the coordi-
nate z = θB as a coordinate along the field line labeled by
α = ζB − q0θB = constant.

GKV-X solves the electrostatic gyrokinetic equation
for the perturbed ion gyrocenter distribution function δ f
[16, 17],(
∂

∂t
+ v||b · ∇ + c

B
b × ∇Φ · ∇ − μ

mi
b · ∇B

∂

∂v||
+ ud · ∇

)
δ f

=
(
u∗ − ud − v||b) · e∇Φ

Ti
FM +C(δ f ), (5)

where the velocity-space coordinates v|| and μ = miv
2⊥/2B

represent the parallel velocity and magnetic moment, re-
spectively. The Maxwellian distribution with tempera-
ture Ti is denoted by FM, the collision term is written as
C(δ f ), and b = B/B is the unit vector parallel to the mag-
netic field. The magnetic and diamagnetic drift velocities
are defined by ud = (c/eB)b × (μ∇B + miv

2
‖ b · ∇b) and

u∗ = (cTi/eB)b× [∇ ln n+ (miv
2/2Ti−3/2)∇ ln Ti], respec-

tively. In the wavenumber space (kx, ky), the gyro-phase-
averaged electrostatic potential at the gyrocenter position,
Φ, is related to the electrostatic potential at the particle po-
sition, φ, as Φkx,ky = J0(k⊥v⊥/Ωi)φkx,ky . The zeroth-order
Bessel function J0(k⊥v⊥/Ωi) represents the finite gyrora-
dius effect. The electrostatic potential φkx,ky is calculated
from the quasi-neutrality condition,∫

d3vJ0δ fkx,ky − n0
eφkx,ky

Ti
[1 − Γ0(bk)] = ne,kx,ky , (6)

where δ fkx,ky is the Fourier component of δ f , n0 is the
average electron density, Γ0(bk) = I0(bk) exp(−bk) with
bk = (k⊥vti/Ωi)2, and I0 is the zeroth-order modified Bessel
function. The electron density perturbation ne,kx,ky is as-
sumed to be given in terms of the electron temperature Te

and the average density n0 by

ne,kx,ky

n0
=

⎧⎪⎪⎨⎪⎪⎩e
[
φkx,ky − 〈φkx,ky〉

]
/Te if ky = 0

eφkx,ky/Te if ky � 0
. (7)

Also, 〈· · · 〉 denotes the flux surface average.

3. Linear Simulations
To investigate ITG modes and zonal flows in LHD dis-

charges, we perform linear simulations using the linearized

version of GKV-X. We use the code to solve the Fourier
transformed expression of Eq. (5) in the linear, collision-
less and zero-beta case,(
∂

∂t
+ v‖b · ∇ − μmi

b · ∇B
∂

∂v‖
+ iωDi

)
δ fkx,ky

= FM(−v‖b · ∇ − iωDi + iω∗T i)J0(k⊥v⊥/Ωi)
eφkx,ky

Ti
, (8)

where ωDi is the magnetic drift frequency, and ω∗T i is the
diamagnetic drift frequency with the following form:

ω∗T i = − cTi

e
r0a
Ψ ′

ky

[
1
Ln
+

1
LT i

(
miv

2

2Ti
− 3

2

)]
. (9)

Here, we assume that the equilibrium radial electric field is
zero. Therefore, the frequencies observed in the following
simulations are regarded as those measured in the plasma
frame, i.e., ωsim

pl = ωlab − ωE×B, if there exists an equilib-
rium electric field. In Eq. (9), Ln is the background gradient
scale length for the density defined by L−1

n = −d ln ni/dr,
and LT i is the gradient scale length of the ion temperature
defined by L−1

T i = −d ln Ti/dr. For other terms and factors
in the gyrokinetic equation Eq. (8), i.e., the magnetic drift
frequency, mirror force term, perpendicular wavenumber,
and parallel derivative term, GKV-X employs exact forms
including geometrical effects as written in Eqs. (24)-(28) in
Ref. [12].

3.1 Equilibria in LHD discharges
For simulations using GKV-X, we should prepare

equilibrium configurations corresponding to the experi-
ment. In the LHD discharge of shot number 88343, the
profiles of the electron density (ne), ion temperature (Ti),
and electron temperature (Te) are obtained in the low-Ti

phase (t = 1.833 s) and the high-Ti phase (t = 2.233 s) [10],
as shown in Figs. 1-(a) and (d). Using the profiles as input
to the VMEC calculation, we obtain the equilibrium field
configurations corresponding to the discharge in each Ti

phase. Hereafter, we assume ni/ne = 1 and Ti/Te = 1. The
radial profiles of the temperature gradient normalized by
the major radius R0, i.e., R0/LT i, and the normalized den-
sity gradient R0/Ln are determined from the sixth-order fit-
ting functions of ρ for the experimental profiles of Ti and
ni, as shown in Figs. 2-(a) and (b), respectively. For the
obtained equilibria, we plot the radial profiles of the safety
factor in Fig. 2-(c) and the profiles along the field line of
the magnetic field strength, magnetic drift frequency, and
mirror force term in Figs. 3-(a), (b), and (c), respectively,
where the safety factor q = 1.7 at ρ = 0.61 in the low-
Ti phase and at ρ = 0.65 in the high-Ti phase. The field
strength shown in Fig. 3-(a) for the low-Ti phase takes al-
most the same minimal value at the bottom of each helical
ripple, which implies that particles trapped deep in heli-
cal ripples have very low radial drift velocities. Compar-
ing the field strength profiles at q = 1.7 in Fig. 3-(a), the
ripple-trapped particles are considered to have larger ra-
dial drift velocities in the high-Ti phase than in the low-Ti
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Fig. 2 Radial profiles of (a) normalized ion temperature gradi-
ent R0/LT i, (b) normalized density gradient R0/Ln, and
(c) safety factor q in the low-Ti (blue) and high-Ti (red)
phases.

Fig. 3 Profiles along the field line for (a) normalized magnetic
field strength B/B00, (b) magnetic drift frequency ωDi

normalized by vtiR−1
0 /kyρti, and (c) mirror force term nor-

malized by (μB00/mi)R−1
0 . All profiles are evaluated with

kx = 0 and q = 1.7 at ρ = 0.65 in the high-Ti phase (red)
and ρ = 0.61 in the low-Ti phase (blue). In (b), we use
μ/(miv

2
ti/B00) = 0.71 and v‖/vti = 1.3.

phase. The positive and negative magnetic drift frequen-
cies ωDi represent the favorable and unfavorable magnetic
curvatures for stabilization, respectively [18]. Figure 3-(b)
shows that the magnetic curvature is slightly more favor-
able in the high-Ti phase than in the low-Ti phase.

3.2 Profiles of ITG growth rates
Figure 4 exhibits the linear growth rates and real fre-

quencies of the ITG modes as functions of the normal-
ized poloidal wavenumber kyρti in the low-Ti and high-
Ti phases. The plots are evaluated with kx = 0 at sev-
eral radial points. The magnitudes of the growth rates
and the real frequencies in the high-Ti phase are higher
than those in the low-Ti phase, and the growth rates have
maximum values for each radial position. For example, at
ρ = 0.65 in the high-Ti phase, the maximum growth rate
is γmax = 0.25 (vti/R0) for kyρti = 0.35. Therefore, we can
obtain the radial profiles of the maximum growth rates as
shown in Fig. 5. The unstable regions of the ITG modes are
localized at the outer radial region, which agrees with the
linear eigenvalue analyses [19, 20] with the modeled tem-
perature profiles in other LHD discharges. From the plots,
we can find the peaks of γmax which exist at

ρsim
peak ∼

{
0.83
0.65

,

and (kyρti)sim
peak ∼

{
0.20 for low-Ti phase
0.35 for high-Ti phase

,

(10)

in radial and wavenumber spaces, respectively. When the
results are compared with the fluctuation measurements

Fig. 4 Growth rates γ (top) and real frequencies ωr (bottom)
of the linear ITG modes as functions of the normalized
poloidal wavenumbers kyρti in the low-Ti (blue) and high-
Ti (red) phases. Open circles and open triangles show the
results in the low-Ti phase at ρ = 0.75 and ρ = 0.83, re-
spectively. Solid circles and solid triangles correspond to
the results in the high-Ti phase at ρ = 0.65 and ρ = 0.83,
respectively.
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Fig. 5 Radial profiles of γmax for the low-Ti (blue diamonds) and
high-Ti (red circles) phases.

Fig. 6 Eigenfunctions of the electrostatic potentials φk = φr+ iφi

along the field line coordinate z in the low-Ti phase at
ρ = 0.83 and kyρti = 0.20 (blue) and the high-Ti phase
at ρ = 0.65 and kyρti = 0.35 (red). Real and imaginary
parts of the eigenfunctions are plotted by solid and dotted
curves, respectively.

in the LHD discharge, the regions of the density fluctu-
ation peaks shown in Eq. (1) are located around the po-
sitions where the ITG modes are most unstable in radial
and wavenumber spaces. From the real frequencies ωr in
Fig. 4, the phase velocities at ρ = ρsim

peak in the plasma frame,

vsim
ph = ωr/ky, can also be roughly estimated as

vsim
ph ∼

{ −2.0 × 102 m/s for low-Ti phase
−1.2 × 103 m/s for high-Ti phase

. (11)

The phase velocities are qualitatively consistent with the
experimental observation that the velocity in the high-Ti

phase is faster than that in the low-Ti phase, although the
absolute values of the velocities are smaller than those in
the experiment. Thus, considering the error bars of the
experimental data, the density fluctuations observed in the
LHD experiments are attributed to the ITG modes.

At ρ = ρsim
peak, the eigenfunctions of the electrostatic

potentials φk = φr+iφi are also obtained as shown in Fig. 6.
Both eigenfunctions have ballooning structures, which are
typical of the ITG instability. Because helical ripples in the
magnetic field have larger amplitudes in the outer radial
region, the eigenfunctions at ρ = 0.83 in the low-Ti phase

Fig. 7 R0/LT i dependence of γmax at several radial positions in
(a) the low-Ti phase and (b) the high-Ti phase. Lines in
both plots show linear fitting functions for each radial po-
sition.

are more strongly corrugated than those at ρ = 0.65 in
the high-Ti phase. In the high-Ti phase, the ITG mode
has higher growth rates and more localized structure at the
outside of the torus, −π/2 < z < π/2, than the low-Ti

phase.

3.3 Critical ion temperature gradient
To find the critical ion temperature gradient for the

ITG mode in the low- and high-Ti phases, we investigate
the dependence of the ITG mode growth rates on the tem-
perature gradient. In Fig. 7, the dependence of γmax on the
normalized ion temperature gradient R0/LT i is plotted with
all parameters except the temperature gradient fixed at the
equilibrium values for several radial positions. From the
plots, we calculate the linear fitting function for each ra-
dial position and obtain the critical values of R0/LT i by
extrapolating the fitting functions to the point where γmax

vanishes. In Fig. 8, we show the critical values for the low-
and high-Ti phases as functions of ρ. Noting the deviation
of the temperature gradient from the critical value in the
figure, we find that the γmax value given by Fig. 5 peaks at
a radial position where the deviation is largest. The critical
values are higher than the experimental values for ρ <∼ 0.6
in the low-Ti phase and for ρ <∼ 0.2 in the high-Ti phase,
where γmax vanishes in Fig. 5.

In the radial profiles of the critical temperature gra-
dient, the critical values for the high-Ti phase are higher
than those for the low-Ti-phase. The higher critical tem-
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Fig. 8 Radial profiles of the critical temperature gradient in the
low-Ti (blue diamonds) and high-Ti (red circles) phases.
Bold curves in light blue and light red represent the exper-
imental profiles of R0/LT i in the low- and high-Ti phases,
respectively.

Fig. 9 R0/Ln dependence of γmax in the low-Ti phase at ρ = 0.83
(blue diamonds) and the high-Ti at ρ = 0.65 (red circles).
The values of R0/Ln from the experimental observations
are represented by the blue arrow (low-Ti at ρ = 0.83)
and red arrow (high-Ti at ρ = 0.65). R0/LT i and other
parameters except R0/Ln are fixed at equilibrium values.
Therefore, an increase in R0/Ln implies an increase in the
pressure gradient and a decrease in ηi = Ln/LT i.

perature gradient is considered to contribute to the plasma
confinement capability. In fact, as explained by Fig. 3-(b)
in Sec. 3.1, the magnetic drift frequency ωDi for the high-
Ti phase shifts slightly in the positive direction at around
z ∼ 0, which implies a more favorable magnetic curvature
for the stabilization of the ITG mode in the high-Ti phase
than in the low-Ti phase. In addition, the lower density gra-
dients in the high-Ti phase than in the low-Ti phase are also
considered to contribute to the higher critical temperature
gradients in the high-Ti phase.

For the density gradient length Ln, we also perform
the same analysis. Figure 9 shows the R0/Ln dependence
of γmax with all parameters except R0/Ln fixed at the equi-
librium values in the low- and high-Ti phases. The plots
are evaluated at ρ = ρsim

peak in both Ti phases. In the high-
Ti phase, the ITG modes are unstable for a broad range of
R0/Ln with positive and negative signs. In the figure, an in-

Fig. 10 Linear responses of zonal flow potentials for the radial
wavenumber kxρti = 0.24 for (a) q = 1.7 at ρ = 0.61
(low-Ti phase, solid blue curve) and at ρ = 0.65 (high-
Ti phase, solid red curve), (b) q = 1.1 at ρ = 0.83
(low-Ti, solid blue curve) and at ρ = 0.87 (high-Ti, solid
red curve). Dashed curves represent GAM-averaged re-
sponse kernels KL(t).

crease in R0/Ln implies an increase in the pressure gradient
and a decrease in ηi ≡ Ln/LT i because R0/LT i is fixed. We
find that the ITG mode is stabilized at R0/Ln >∼ 14 (ηi <∼
0.85) for the high-Ti phase and at R0/Ln >∼ 17 (ηi <∼ 0.82)
for the low-Ti phase. The changes in γmax for the density
gradient lengths at ρ ∼ ρsim

peak±0.1, that is, R0/Ln ∼ 9.3±2.0
in the low-Ti phase and R0/Ln ∼ −0.9 ± 0.2 in the high-Ti

phase, are within a few percent of the central values. Con-
cluding from the R0/LT i dependence of γmax in Fig. 7, it
can be stated that the effect of errors in the density gradi-
ent on the ITG growth rates is negligible, whereas changes
in the ion temperature gradients greatly affect the growth
rates in the LHD discharge.

3.4 Zonal flow response
Zonal flows are produced by an electrostatic potential

perturbation that varies in the radial direction but takes a
constant value on a flux surface (hence ky = 0). There-
fore, the diamagnetic drift frequency ω∗T i in Eq. (8) does
not appear in the gyrokinetic equation for the zonal flow
components. In Fig. 10, we show the response functions of
the flux surface averaged zonal flow potentials to the ini-
tial perturbation, 〈φk⊥ (t)〉/〈φk⊥(0)〉, during their linear col-
lisionless damping in the low- and high-Ti phases. The
results are obtained for the same perpendicular wavenum-
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Table 1 Comparison of residual zonal flow levels at t ∼ 23 (R0/vti) in low-Ti and high-Ti phases for two safety factors, q = 1.7 and 1.1.

q = 1.7
Low-Ti (ρ = 0.61) High-Ti (ρ = 0.65)

KL (kxρti = 0.12) (3.79 ± 0.19) × 10−2 (3.58 ± 0.48) × 10−2

KL (kxρti = 0.24) (8.97 ± 0.17) × 10−2 (7.42 ± 0.22) × 10−2

q = 1.1
Low-Ti (ρ = 0.83) High-Ti (ρ = 0.87)

KL (kxρti = 0.12) (3.02 ± 0.38) × 10−2 (3.00 ± 0.18) × 10−2

KL (kxρti = 0.24) (9.48 ± 0.09) × 10−2 (8.33 ± 0.20) × 10−2

ber, kxρi = 0.24, and two safety factors, q = 1.7 and 1.1.
Radial positions are determined by the radial profiles of the
safety factors in Fig. 2-(c), i.e., ρ = 0.61 (low-Ti phase) and
ρ = 0.65 (high-Ti phase) for q = 1.7, and ρ = 0.83 (low-
Ti phase) and ρ = 0.87 (high-Ti phase) for q = 1.1. The
figures show clear contrasts between the low-Ti and high-
Ti phases in the early zonal flow evolution for both safety
factors. In addition, the geodesic acoustic mode (GAM)
oscillations at the lower safety factor (q = 1.1) are damped
faster than those at the higher one (q = 1.7). This agrees
with theoretical studies [21, 22] as well as drift kinetic cal-
culations [23].

The GAM-averaged response kernel KL(t) is defined
by

KL(t) =
1
τGAM

∫ t+τGAM/2

t−τGAM/2

〈φk⊥ (t′)〉
〈φk⊥ (0)〉 dt′, for t ≥ τGAM

2
,

(12)

where τGAM is the period of the GAM oscillations. The
evolution of KL(t) is shown in Fig. 11, and the residual
zonal flow levels are evaluated at t ∼ 23 (R0/vti), as pre-
sented in Table 1, for kxρi = 0.12 and 0.24. According
to an analytical study [21], the early behavior of KL(t) de-
pends mainly on the Fourier spectrum of the field strength.
In the late evolution, the residual zonal flow level is af-
fected by the perpendicular wavenumber as well as the
field spectrum. Figure 11 shows that the initial behavior
of KL for t <∼ 1.0 (R0/vti) does not change for different
perpendicular wavenumbers, but is influenced by the equi-
librium with the different Ti profiles for each safety factor.
We also observe that the residual zonal flow levels are en-
hanced by increasing the radial wavenumber and are also
influenced by the helical Fourier components, which de-
pend on the radial position and the Ti profile, as seen in
Fig. 3-(a). These simulation results are consistent with the
analytical conclusions for the zonal flow responses [21].
Note that the neoclassical transport optimized LHD con-
figuration, the so-called inward-shifted LHD configura-
tion, yields a larger KL(t) than that in the standard LHD
configuration [24]. In our simulations, in fact, the field
strength spectrum of the low-Ti phase is similar to that of
the inward-shifted LHD configuration used in Refs. [7,24].

Fig. 11 Evolutions of the GAM-averaged response kernels KL(t)
for kxρti = 0.12 (dotted curves) and kxρti = 0.24 (dashed
curves) for (a) q = 1.7 and (b) q = 1.1 at the same radial
positions as in Fig. 10. Blue and red curves represent the
results for the low-Ti and high-Ti phases, respectively.

Hence KL(t) is larger in the low-Ti phase than in the high-
Ti phase.

4. Conclusions
In this study, we investigated ITG modes and zonal

flows in LHD discharges by using linear gyrokinetic sim-
ulations. We focused on the high-ion-temperature LHD
discharge where the density fluctuations are measured in
radial, wavenumber, and phase velocity spaces. In the sim-
ulations of the low- and high-Ti phases in the discharge,
the unstable ITG modes with typical ballooning structures
have growth rates that peak at radial positions with the
largest deviation of the temperature gradient from the crit-
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ical values. The peak positions of the growth rate in radial
and wavenumber spaces are close to the regions where den-
sity fluctuation peaks are measured experimentally. The
critical temperature gradients in the high-Ti phase are
higher than those in the low-Ti phase. The former phase
has more favorable magnetic curvature and lower density
gradients than the latter. In addition, the characteristics of
the phase velocities of the ITG modes agree qualitatively
with the experimental observations. From the simulation
results, therefore, the experimentally observed increases in
the fluctuations are attributed to ITG instability. On the
other hand, we observed that the Fourier spectra of the
field strength affect the early behavior of the zonal flow re-
sponses in different Ti phases, whereas the residual levels
are influenced by the radial wavenumber, the radial posi-
tion, and the field spectra, as predicted theoretically.

ITG turbulence is considered to play a vital role in
anomalous ion heat transport in low-β plasmas. Nonlin-
ear gyrokinetic ITG turbulence simulations are required to
quantitatively evaluate the amplitudes and spectra of the
turbulent fluctuations and the resulting anomalous trans-
port coefficients. Although the present analyses are limited
to linear simulations of the ITG modes and zonal flows,
nonlinear simulations of ITG turbulence under the LHD’s
experimental conditions are currently in progress as the
next step of this study, and the results will be reported else-
where.
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