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Abstract

Behaviors of low poloidal (m) and toroidal (n) Fourier modes in the Large Helical Device (LHD) are investigated
by means of direct numerical simulations (DNS) of fully three-dimensional, nonlinear and compressible
magnetohydrodynamics (MHD) equations. Starting from an ideal equilibrium with the position of vacuum magnetic
axis Rax = 3.6 m and β0 = 4% finite pressure, a m/n = 2/1 mode grows in the DNS. Fluid motions on poloidal sections
are governed by the two pairs of anti-parallel vortex pairs associated with the m/n = 2/1 modes. The vortex pairs
transport plasma pressure from the core to edge region and bring about large pressure deformations. It is also shown
that the toroidal part in the kinetic energy and the enstrophy are comparable to the poloidal parts of them. The
numerical results demonstrate importance of investigating three-dimensional behaviors of MHD plasmas in LHD.
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1. Introduction

Understanding MHD behaviors is one of the most
important subjects to understand physics of plasma
confinment in LHD. MHD fluids in LHD are exposed to
various physical mechanism such as the steep pressure
gradient and the curvature effects of the magnetic field lines.
These mechanism have been expected to cause MHD
instabilities when so-called inward-shifted magnetic field
configuration is adopted. However, recent experiments with
Rax = 3.6 m (inward-shifted) vacuum magnetic axis revealed
that the plasma was confined very well in spite of the
Mercier-unstable nature of the magnetic field [1]. It is
reported in the article that, even though an m/n = 2/1 MHD
activity appeared when the averaged beta 〈β〉 stayed for 1%
< 〈β〉 < 2.2%, it did not destroy the confinment. It suggests
that there should be some stabilization mechanism which
suppress instabilities.

In order to investigate MHD behaviors in full three-
dimensional (3D) geometry of LHD, direct numerical
simulations (DNS) of MHD equations is one of the best
approaches. In this article, we conduct DNS of full 3D,
compressible, dissipative and nonlinear MHD equations
which start from an equillibrium with Rax = 3.6 m and report
on low-n behaviors of the MHD plasmas. Though the full-
torus evolution of the MHD plasma with the same initial
equilibrium is partially reported in the previous work [2], only
a few aspects of the numerical results are described and
detailed fluid motions are not presented there. In this article,
the simulation results are reported with special attention to

fluid motions.

2. Direct numerical simulations

The MHD equations are described in the helical-toroidal
coordinate system. Detailed information about our numerical
code is reported in Ref. 3. The number of grid points is 97 ×
97 on poloidal sections and 640 in the toroidal direction. The
MHD fluid is assumed to obey to the equation of an ideal
gas with the ratio of specific heats γ = 1.4. The non-
dimensional parameters of the MHD equations are the heat
conductivity κ = 1 × 10-6, the resistivity µ = 1 × 10-5 and the
viscosity ν = 2 × 10-3.

The initial condition is provided by making use of the
HINT code [4]. The HINT computation gives a 3D MHD
equilibrium in a helical system. In our previous work, an
MHD equilibrium in the LHD system with Rax = 3.6 m and
β0 = 4% was obtained [5]. Starting from the equilibrium, the
plasma is dominated by the resistive ballooning instability if
the system is under the stellarator (half-pitch) symmetry. Here
we investigate behaviors of the MHD plasma starting from
the same equilibrium but without the half-pitch symmetry.

In Fig. 1, the time evolution of the kinetic energy 〈k〉 =
〈ρ |v|2/2〉 is shown, where v = (v1, v2, v3) is the velocity vector
and the brackets 〈·〉 represent the volume average. The kinetic
energy begins to grow rapidly at t ~– 200 τA. At t ~– 200 τA, we
observe ballooning-like fluctuations on horizontally-elongated
poloidal sections. In Fig. 2, the pressure profile on a
horizontally-elongated poloidal section is shown at t = 180,
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t = 180, 280 and 350 τA, the two anti-parallel vortex pairs
associated with the m/n = 2/1 mode are strongly excited.
Because of the mutual advection of the anti-parallel vortex
pairs, the high-pressure regions are divided into two groups,
advected and stretched toward the edge region. Consequently,
two mushroom-like structures are formed on poloidal
sections. The formation of the mushroom structures leads to
generation of the secondary vortex structures, as are observed
at t = 500 τA. After t = 500 τA, the vortices become weaker
and the mushroom structures become ambiguous. The plasma
finaly forms a broad pressure profile at the core and relaxes
to inactive state t = 700 τA.

Now we should pay attentions to the point that
streamlines in Fig. 2 have sinks or sources. Though
streamlines do not represent strength of streams directly, the
dense convergent streamlines suggest that there are strong
sinks or sources there. The sinks or sources of the two-
dimensional stremlines come either from three-dimensionality
or from compressibility of the velocity field. In Fig. 3(a), the
mean kinetic energy 〈k〉 = 〈ρ |v|2/2〉 is compared to its two-
dimensional contribution 〈kpol〉 = 〈ρ |vpol |2/2〉. We find that
〈kpol〉 (dotted line) is as large as one-half of 〈k〉 (solid line) at
most. It implies that the toroidal component of the velocity
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Fig. 1 Time evolution of the kinetic energy.

Fig. 2 Pressure and streamlines on a poloidal section at a few time snapshots.

280, 350, 500, 600 and 700 τA. The pressure is higher for
darker shades. The two thick solid ellipses represent magnetic
surfaces with the rotational transform ι/2π = 0.5 and 0.66 at
the initial time, respectively. Thin lines represent streamlines
depicted with the poloidal components of the velocity vector
vpol = (v1, v2). As time evolves from the initial state to
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Fig. 4 (a) Isosurface of the pressure. (b) Isosurfaces of the
toroidal vorticity ωtol. Dark and light shades represent
positive and negative signs of ωtol, respectively.

v3 occupies a significant part of the kinetic energy. In
Fig. 3(b), the mean enstrophy 〈Q〉 = 〈|ωω |2/2〉 is compared to
the toroidal component of the vorticity 〈Qtol〉 = 〈ω3ω3/2〉,
where ωω  = ∇ × v is the vorticity and ω3 (ω3) is covariant
(contravariant) component (calculated by v1 and v2) of the
vorticity vector. We find that 〈Qtol〉 occupies 2/3 of 〈Q〉 at
most. These two comparisons indicate that the fluid motions
are fully three-dimensional and that the toroidal motions of
the plasma is as important as those on poloidal sections. In
Fig. 3(b), the mean squared dilatation 〈(∇ · v)2〉 is compared
to 〈Q〉 and 〈Qtol〉. It is clear that 〈(∇ · v)2〉 (dashed line) is
quite smaller than the other two quantities. It indicates that
direct contributions of compressibility to the fluid motions
are very small, though there can be some indirect
compressibility effectsto fluid motions. (Note that, in neutral
fluid turbulence, small compressibility can cause significant
changes in vortex structures [5].)

Three-dimensional natures of fluid motions are more
clearly seen in isosurfaces of the pressure p in Fig. 4(a) and
ω3 in Fig. 4(b). A clear m/n = 2/1 structure is observed in
Fig. 4(a). However, the isosurfaces are strongly distorted near
the horizontally-elongated cross-sections. It suggests that the
structure is not very simple but consists of some other

Fig. 3 (a) Time evolutions of mean values of the three-
dimensional velocity magnitude 〈k〉 (solid line) and the
two-dimensional magnitude 〈kpol〉 (dashed line). (b)
Time evolutions of the enstrophy 〈Q 〉 (solid line), its
toroidal component 〈Qtol〉 (dashed line) and the mean
squared dilatation 〈(∇ · v)2〉.

(typically n = 10) modes, although m/n = 2/1 is the most
dominant mode. The three-dimensional structures of the
toroidal vorticity ω tol in Fig. 4(b) are more complicated than
those of p. We find that dark- and light-shaded isosurfaces
(for positive and negative ω3, respectively) come to the inner-
side of the torus alternately ten times. It means that n = 10
modes have finite amplitudes. It is quite reasonable to
consider that the growth of multiple modes is one of the
mechanism which brings about (nonlinear) saturation of the
kinetic energy growth in Fig. 1.

3. Summary

We have conducted fully toroidal DNS of MHD plasma
in LHD and observed growth of m/n = 2/1 modes. The m/n =
2/1 anti-parallel vortex pairs transport plasma pressure from
the core to edge region, and are relaxed to an inactive state.
Though toroidal motions have not been investigated very
much, our numerical results suggest that toroidal motions are
as important as poloidal motions (vortex structures) for
pressure transports in MHD. Detailed analysis on growth,
saturation and relaxation of m/n = 2/1 modes and pressure
transport associated with the m/n = 2/1 mode will be reported
elsewhere.
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