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1.  Introduction
Toroidal plasmas have nonlinear response and lead to 

complex phenomena [1]. The nonlinearity allows formation 

of a variety of structures. The structural transition to inho-

mogeneous profi les in toroidal plasmas has been the focus 

of numerous researches. A typical example of this is H-mode 

transition [2], key mechanisms of which include bifurcation 

of the electric fi eld [3,4] and associated suppression of tur-

bulence by electric fi eld structures [5,6]. Thus signifi cant 

attention has been devoted to studying the steep radial electric 

fi eld structure in the L/H transition physics [7].

Although signifi cant progress has been made in clarify-

ing the radial electric fi eld structure, several fundamental 

issues remain. For instance, the rapid establishment of the 

density profi le pedestal after the onset of L/H transition [8] 

remains unexplained. The one-dimensional continuity equa-

tion is written as

 (1)

where n, V, Da and S are the density, fl ow velocity, diffusion 

coeffi cient and particle source, respectively [9]. The fi rst and 

second term in the right hand side of Eq. (1) correspond to 

the convective and diffusive transport term, respectively. It is 

well known that turbulent diffusivity decreases rapidly after 

transition, so the coeffi cient Da decreases, leading a large 

gradient of n [10]. However, this reduced diffusion makes 

the time required to reach a steady state much longer than 

observed. One possible cause of the fast establishment of 

the pedestal is an increase of the inward particle pinch. In 

the steady state, peaked plasma profi les are often observed 

without a suffi cient particle source, and this suggests the 

existence of an inward pinch having a velocity on the order 

of 1 [m/s] [9,11]. The origin of the inward pinch has yet to 

be unresolved. Ware pinch driven by the toroidal electric 

fi eld [12] alone cannot account for the peaked density profi le, 

because the inward pinch is observed even in helical systems 

[13,14] and noninductively current driven tokamaks [15]. In 

addition, the enhancement of the pinch velocity is observed 

after the L/H transition [16]. There have been several attempts 

to explain this “anomalous” inward pinch [17-26]. Turbulent 

transport produces the inward particle pinch in the core region 

of plasmas, but in the H-mode transport barrier, fl uctuations 

are suppressed, so another mechanism must be introduced to 

explain the inward particle pinch.

Another issue is the formation of a poloidal shock associ-

ated with a large poloidal fl ow. In theoretical studies in which 

only the poloidal variation was taken and the radial structure 

was neglected, it was predicted that the poloidal shock can 

appear in H-mode plasmas [27,28]. The poloidal shock is 

a steady density or potential jump in the poloidal direction, 

resulting from plasma compressibility and toroidicity. Some 
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experiments have indicated the existence of poloidal asym-

metry [29,30]. The poloidal electric fi eld generates convective 

transport in the radial direction by the E × B drift. If such a 

poloidal shock exists, a large inward particle pinch could be 

induced [1], and may infl uence the pedestal formation. This 

consideration has motivated the study of two-dimensional 

structures at the transport barrier. Some progress has been 

reported [31,32], but our understanding of these structures is 

far from satisfactory.

In this paper, we study the two-dimensional structure of 

the electrostatic potential, density and fl ow velocity near the 

edge of a tokamak plasma. A set of equations, which describes 

the transition to the steep radial electric fi eld structure as 

well as the poloidal inhomogeneity, is derived by considering 

the nonlinearity in bulk-ion viscosity and (turbulence-driven) 

shear viscosity. By introducing an ordering (shock ordering 

[27]), the coupled nonlinear partial differential equations are 

divided into two parts. The fi rst is an ordinary differential 

equation that governs the steep radial structure of the radial 

electric fi eld (or poloidal fl ow). The bifurcation and transition 

of the poloidally averaged part of the radial electric fi eld are 

obtained from this equation. The second is a nonlinear partial 

differential equation that governs the poloidal asymmetry of 

the fl ow (including the poloidal shock). In the latter equation, 

the radial structure of the strong radial electric fi eld is already 

given by the former equation. Thus the theoretical framework 

that describes the bifurcation of the radial structure as well as 

the poloidal inhomogeneity is obtained. A two-dimensional 

structure generates the inward particle pinch, and gives a 

possible explanation for the rapid establishment of the edge 

pedestal on L/H transition. It is emphasized that the validity 

of the L/H transition theory, which has been based on one-

dimensional analyses, is confi rmed by this two-dimensional 

analysis. The paper is organized as follows. Previous works 

on steep structures in the radial and poloidal direction are 

briefl y introduced in Sec. 2. Derivation of the model equations 

is described in Sec. 3. In Sec. 4, solutions of two-dimensional 

structures are described in the case with a weak and strong 

radial electric fi eld. Enhancement of the inward particle pinch 

at the onset of L/H transition and experiments to identify the 

two-dimensional structure are discussed in Sec. 5. The sum-

mary is presented in Sec. 6.

2.   A Brief Overview of One-Dimensional 
Analyses
First, we will revisit two examples of a steep structure 

in one direction. One is a radial solitary structure induced by 

electrode biasing, and the other is a poloidal shock structure.

2.1  Radial solitary structure
In H-mode, the density or temperature profi le near the 

plasma edge becomes steeper and forms a pedestal. The radial 

electric fi eld plays an important role in the improved confi ne-

ment [7]. The steep gradient of the radial electric fi eld is 

found to decrease the anomalous transport [5,6]. The radial 

electric fi eld becomes large in the transport barrier, so the 

radial electric fi eld and the toroidal magnetic fi eld create a 

large E × B fl ow velocity pointing in the poloidal direction. 

The poloidal Mach number Mp = Er / (vti Bp) increases to the 

order of unity in H-mode, where Er is the radial electric fi eld, 

vti =  is the thermal velocity of ions, Ti is the ion 

temperature, mi is the ion mass and Bp is the poloidal mag-

netic fi eld. Most of the previous studies were concerned with 

clarifying the details of the structural formation mechanism 

in the radial direction.

Nonlinear mechanisms of the steep radial electric fi eld 

structure have been studied by biased limiter experiments in 

which an externally driven H-mode transition was induced 

[33,34]. An externally imposed voltage changes the radial 

electric fi eld structure in the same way as in spontaneous 

H-modes. Imposing a radial electric fi eld by an electrode 

inserted into a plasma gives a transition to an improved con-

fi nement state when the voltage applied to the electrode is 

larger than the threshold value. This transition is characterized 

by a sudden change of the radial electric fi eld structure from 

a fl at one to a peaked one. Theoretical studies have clarifi ed 

the formation mechanism of this solitary radial electric fi eld 

structure [35,36]. The radial electric fi eld structure is calcu-

lated from the charge conservation law,

 
(2)

where Jvisc is the current driven by shear viscosity, Jr is the 

local current, Jext includes the current driven into the electrode 

by the external circuit and ion orbit loss current, etc., ε0 is the 

vacuum susceptibility, and ε⊥ is the dielectric constant of a 

magnetized plasma. The nonlinearity of the local current has 

a major effect on the radial electric fi eld structural bifurcation. 

One solution of the radial electric fi eld structure is shown in 

Fig.1. A stable solitary structure is obtained. This structure has 

a large gradient, and this characteristic is typical in H-mode. 

Fig. 1  Solitary radial structure of the radial electric fi eld 
(translated into Mp) in electrode biasing H-mode. The 
positions r – a = –5 and 0 [cm] are where the electrode 
and the limiter are placed, respectively.
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The nonlinearity in the relationship between the radial electric 

fi eld and the radial current has been examined explicitly in 

other toroidal plasma experiments [37].

2.2  Poloidal shock structure
In a toroidal plasma, the poloidal structure can be asym-

metric as well as the radial structure. In the tokamak edge 

region in H-mode, the poloidal fl ow increases to Mp > 1, and 

appearance of a poloidal shock structure in the potential and 

density profi le has been predicted theoretically with such a 

large poloidal fl ow [27,28]. This shock structure is a steady 

jump structure. In ref. [27] the poloidal shock structure in a 

single magnetic fl ux surface is derived from the momentum 

balance equation,

 
(3)

where V
→

i is the fl ow velocity, J
→

 is the plasma current, pi and 

pe are the ion and electron pressure and π←→i is the viscosity 

tensor of ions. The fl ow is compressible with a supersonic 

poloidal fl ow, so the convective derivative term becomes ef-

fective in this situation. The parallel component of Eq. (3) can 

be written to be

 

(4)

using

Details of the derivation of Eq. (4) and the defi nition of each 

constant will be described in section 3. In the left hand side 

of Eq. (4), the fi rst term is derived from bulk viscosity arising 

from pressure anisotropy between the parallel and perpendicu-

lar direction, the second term represents the difference be-

tween the convective derivative (V·∇)V and pressure gradient 

∇p, and the third term is nonlinearity coming from the higher 

order of χ. The terms in the right hand side of Eq. (4), which 

are derived from toroidicity in this system, are proportional to 

the inverse aspect ratio ε and have sinusoidal dependence.

Solving Eq. (4), shock solutions can be obtained. Figure 

2 (a) shows shock profi les when D = 0.1. Large density jumps 

appear near the position θ = 0 (the low fi eld side of tokamak) 

when Mp ~ 1. Figure 2 (b) shows the profi le of the poloidal 

electric fi eld when Mp = 1.0. The large poloidal fi eld is local-

ized at the shock position. The shock structure is characterized 

by the steepness and the position of the shock. The position of 

the shock can be represented analytically as

 

(5)

where 

The shock position depends on Mp, so as the poloidal fl ow 

increases, the shock position changes correspondingly. The 

maximum θ gradient is given at the shock position as

 

(6)

The steepness of the shock is inversely proportional to D 

when D << 1.

The shock formation mechanism can be explained as 

follows. There are two states for the poloidal structure. One is 

the ∇p-dominant state. When the poloidal fl ow is subsonic (Mp 

<< 1), the convective derivative term is negligible, so the ∇p 

term determines the state. The ∇p smoothes the profi le, so the 

poloidal structure becomes homogeneous. When the poloidal 

fl ow is supersonic (Mp >> 1), the convective derivative term 

becomes dominant, and condition (V·∇)V = 0 determines the 

profi le. This state is another state, the (V·∇)V-dominant state. 

Fig. 2  (a) Profi les of the density perturbation χ  when D = 0.1. 
The cases with Mp = 0.8, 0.9, 1.0 and 1.1 are plotted. 
(b) Profi le of the poloidal electric fi eld calculated from 
the perturbation profi le (a) of the case Mp = 1.0.
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The velocity is conserved along the fl ow line, so the density is 

larger in the region where the magnetic fi eld is stronger. When 

Mp ~ 1, the ∇p term and the (V·∇)V term are competitive, and 

nonlinearity of the higher order of χ appears. In this situation, 

the ∇p-dominant and (V·∇)V-dominant states both exist, and 

shock appears at the boundary between these regions.

3.  Model Equation
3.1   Geometry and momentum balance for 

the two-dimensional problem
To evaluate the two-dimensional structure in tokamak 

edge plasma, the fl ux-surface-averaged equations are inap-

propriate. We consider a large aspect ratio tokamak with a 

circular cross-section, and the coordinates (r, θ, ζ ) are used 

(r: radius; θ : poloidal angle; ζ : toroidal angle). Poloidal 

variations of the density and the electrostatic potential are 

considered, but that of the temperature is neglected. Electrons 

are isothermal, ions are adiabatic, and ni = ne ≡ n is assumed, 

where ni and ne are the ion and electron density, respectively. 

The derivation of the model equation follows Ref. [27], but 

the radial fl ow and shear viscosity are taken into account here 

[38]. By these terms, the radial and poloidal structures are 

coupled with each other. The structures are governed by the 

momentum balance equation

 

(7)

The viscosity π←→i is divided into two terms: the bulk viscosity 

given by a neoclassical process [39], and shear viscosity given 

by an anomalous process [1]. The viscosity of electrons is 

neglected because it is smaller by a factor on the order of 

. Pressure p = nT, and constant temperature T is 

assumed. The perpendicular fl ow is given by the E × B drift 

here, and the fl ow velocity is written as

 

(8)

where Φ is the electrostatic potential,

corresponding to the poloidal fl ow, and

The toroidal symmetry is utilized in this description. The 

parallel component and averaged poloidal component of the 

momentum balance Eq. (7) are given to be

(9)

 

(10)

where 〈 〉 denotes the fl ux surface average. The radial fl ow is 

taken into account, so the ∂Φ/∂θ terms are involved in the left 

side of Eqs. (9) and (10). Using the viscosity tensor π←→i = (p// 

– p⊥)(b̂b̂ – ι←→i/3), where (p// – p⊥) is the pressure anisotropy, 

b̂ is the unit vector parallel to the magnetic fi eld and ι←→ is the 

unit tensor, the bulk viscosity term can be written as

 

(11)

The fi rst term of Eq. (11) is dominant, so only this term is 

kept in Eq. (9) hereafter. In contrast, the surface average is 

taken in Eq. (10), in which the second term of Eq. (11) re-

mains. The pressure anisotropy, deduced from the drift kinetic 

equation with mass fl ow velocity, is as follows [40]:
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(12)

The integral Ips is

 

(13)

where

νT is the characteristic collision frequency defi ned in Ref. 

[41], and Gr is a geometric factor, taken to be Gr = 1 in this 

paper. The shear viscosity is given by the second perpendicu-

lar derivative of the fl ow velocity, and is here simply given 

to be

 (14)

where μ is a shear viscosity coeffi cient. The coeffi cient μ 

depends on the radial electric fi eld and has spatial varia-

tion, but we take it to be constant in space for simplicity. 

This is because we are focusing on the structural formation 

mechanism from the nonlinearity of each term. The structural 

formation mechanism from turbulent induction will be treated 

elsewhere. The Boltzmann relation

  
(15)

is adopted here to determine variables, where f̄  and Δ f rep-

resent the spatial average and perturbed parts of quantity 

f, respectively. The variables that must be determined from 

Eqs. (9), (10) and (15) are K, Φ and n, which have radial and 

poloidal variations. A variable χ = ln(n/n̄) is introduced to 

represent density variation. From the Boltzmann relation Eq. 

(15), χ is directly related to the potential perturbation.

3.2  Ordering and decoupling of equations
In this paper, we are mainly concerned with the case 

in which the poloidal Mach number Mp~1, and the steep 

structure in the poloidal direction is formed in this case, so 

the shock ordering, which is

  (16)

is adopted, where ε is the inverse aspect ratio. ε is considered 

to be small because the calculation is carried out only near the 

edge in a large aspect ratio tokamak. A condition

Vr / Vp << 1  (17)

is satisfi ed, even if a strong poloidal shock exists. This con-

dition is confi rmed, a posteriori, by the derived structures. 

Condition Vr / Vp << 1 makes the model equation simpler. The 

continuous equation in a steady state

  (18)

shows K is a fl ux surface variable. Expanding Eq. (9) with 

χ, and taking up to O(ε), the following model equation is 

obtained:

 

  

(19)

where

and

Note that coeffi cient D has nonlinear dependency on Mp. 

Equation (19) is the equation for a strong toroidal damping 
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case when

 
(20)

In this case, Mp is proportional to the radial electric fi eld. This 

condition is taken to simplify the model equation.

Now Eqs. (10), (15) and (19) determine the structure. 

This set is solved as follows. A profi le of Mp is obtained by 

solving Eq. (10) independently from Eq. (19). Equation (10) 

is the same as the equation used for obtaining a radial profi le 

of the radial electric fi eld in the previous H-mode transition 

model [3,4,36] (see section 2.1). Mp (including the radial 

profi le) is put into Eq.(19), and the two-dimensional structure 

of χ is obtained. Then the radial velocity is deduced.

Using these model equations, analysis is carried out in 

the region near the plasma edge, r = (a – d) ~ a, where r = a 

is the position of the last closed fl ux surface. We consider the 

case in which the strong radial electric fi eld is self-organized 

in the middle region of this domain, and choose the boundary 

condition to be χ = 0 at r = (a – d) and a. This is an idealiza-

tion, considering that no perturbation exists outside of this 

region (such as in the edge barrier or biased region). Equation 

(19) is solved using previously obtained Mp profi le [36]. (The 

calculations are performed using the following parameters: R 

= 1.75 [m], a = 0.46 [m], B0 = 2.35 [T], Ti = 40 [eV], Ip = 200 

[kA] and the boundaries r – a = 0, –5 [cm].)

Equation (19) includes characteristic structures both in 

the radial and poloidal direction. These structures are coupled 

with the shear viscosity. Properties of the characteristic 

structures explained as a one-dimensional structure problem 

in section 2.2 are derived from setting μ = 0. There is no 

coupling in the radial direction, and the structures are closed 

in one fl ux surface. Equation (4) is given by integration of 

Eq. (19) with θ.

4.  Two-Dimensional Structure
Equation (19) includes a shear viscosity term that couples 

the radial and poloidal structures so that two-dimensional 

structures can be obtained. The homogeneous (spatially con-

stant Mp) case and the inhomogeneous case, corresponding to 

the L- and H-mode, respectively, are shown in this section. 

The solitary profi le shown in Fig. 1 is used for the H-mode 

case, because this is a typical structure in H-mode, having an 

electric fi eld with a large magnitude and large gradient.

4.1  Case of homogeneous Mp

We fi rst study the case in which Er is homogeneous 

to clarify the competition between the steepening by the 

(V·∇)V-nonlinearity and the radial diffusion. In the absence 

of shear viscosity, the poloidal shock is predicted to appear 

as described in [27]. In L-mode the radial electric fi eld is 

weak and the profi le is rather fl at. Figure 3 shows a profi le of 

the potential perturbation when Mp = 0.33 and μ = 1.0 [m2/s]. 

The potential perturbation is set to zero at the boundary r – a 

= 0, –5 [cm]. This profi le shows that there is gentle variation 

both in the radial and poloidal direction. The case Mp = 0.33 

is used as the state just before the L/H transition. The value 

Mp = 0.33 means that a weak but constant radial electric fi eld 

exists, so the potential difference between the boundaries is 

about 130 [V]. The ratio ΔΦ/Φ is about 6% at the maximum 

of the potential perturbation.

Shear viscosity μ controls the strength of coupling. Fig-

ure 4 shows the dependence of the maximum gradient of χ 
and the peak position on shear viscosity μ when Mp = 1.2, 

which is the case when the poloidal fl ow is large in the whole 

region near the plasma edge. In the shock regime,

 
(21)

radial coupling is weak, and the strong shock is formed in 

every fl ux surface except near the boundaries. The maximum 

gradient of χ and the peak position are those represented in 

Sec. 2.2. When the shear viscosity exceeds a threshold value 

Fig. 3  A two-dimensional potential perturbation profi le with 
small and homogeneous Er.

Fig. 4  Relationship between shear viscosity µ and the poloi-
dal shock structure. The steepness and the position of 
the shock are important for describing the structure.
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μ̂ > μib, Eq. (19) can be simplifi ed to

 

(22)

and its solution is

 

(23)

for the intermediate regime. χ is inversely proportional to μ 

in this regime. Equation (23) gives the maximum value of χ 

at the point θ = π /2 + θα, and thus the maximum gradient of 

χ is

 

(24)

at the point θ = π – θα. When the shear viscosity is very 

strong, i.e.,

μ̂B0 / Bp >> 1 ,  (25)

Eq. (22) gives

 
(26)

which has no dependence on μ and Mp. No strong shock 

appears in this case. The maximum of χ is given at the point 

θ = π, and the maximum gradient of χ becomes

  

(27)

at the point θ = π /2.

In this way, the magnitude of μ determines the two-

dimensional structure. Experimentally μ is estimated to be 

around 100 [m2/s] from transport analysis on CHS [42] or 

from the peak structure of the radial electric fi eld in electrode 

biasing H-mode on TEXTOR [43]. Therefore, the plasmas in 

experimental devices are expected to be in the intermediate re-

gion. We takes μ = 1.0 [m2/s] in the following calculations.

4.2  Cases of inhomogeneous Mp

We next study the two-dimensional structure by employ-

ing the solitary structures of the radial electric fi eld, which 

appear in the biased electrode experiments or in the H-mode 

edge barriers. Profi les of Mp are shown in Fig. 1, which is 

taken to illustrate the bifurcation of the radial electric fi eld 

[36]. Under this condition, Eq. (19) is solved. Figure 5 (a) 

shows an χ profi le, which is the logarithm of the density 

perturbation. The parameters are the same as in Fig. 3. Figure 

5 (b) shows a profi le of the poloidal electric fi eld calculated 

from Fig. 5 (a) using the Boltzmann relation in Eq. (15). The 

region where Mp has a large value is localized in the middle 

of the shear region, so a localized large poloidal electric 

fi eld exists at the points of the shock that have large Mp. In 

addition, the magnitude of Mp varies in the radial direction, 

and the poloidal position of the shock varies in the radial 

direction accordingly. We conclude that the two-dimensional 

structure of the edge transport barrier exists and infl uences the 

plasma fl ow, for the plasma parameters that are relevant to the 

H-mode confi nement.

Comparison between the strong inhomogeneous Er case 

and the weak homogeneous Er case clarifi es the formation 

of the localized steep two-dimensional structure. The strong 

Er case has an Er profi le with a peak in the middle of the 

calculated region, although the weak Er case has a spatially 

constant profi le. The strong Er case has a large potential 

perturbation (the maximum value ΔΦmax = 50 [V] in this 

case), and a large localized poloidal electric fi eld in which the 

poloidal fl ow shear is strong (the maximum value Epmax = 63 

Fig. 5  A two-dimensional structure of the logarithm of den-
sity perturbation (a) and poloidal electric fi eld (b) with strong 
and inhomogeneous Er.

(a)

(b)



560

Journal of Plasma and Fusion Research　Vol.81, No.7　July 2005

[V/m]). This large poloidal electric fi eld generates a large E 

× B fl ow pointing in the radial direction (the maximum value 

Vrmax = 28 [m/s]). In the weak Er case, the values are ΔΦmax 

= 4 [V], Epmax = 9 [V/m] and Vrmax = 4 [m/s], respectively, 

which are one order smaller than in the strong Er case.

5.  Discussion
In this section, we discuss the impact of this two-di-

mensional structure on the formation of the pedestal of the 

transport barrier. The poloidal structure is found to generate 

radial fl ow much larger than 1 [m/s], but this large fl ow region 

is poloidally localized and the fl ow changes its direction ac-

cording to the poloidal position. We calculate the fl ux-surface-

averaged fl ux in the radial direction as

 

(28)

by using the two-dimensional solution. Figure 6 represents 

the radial profi les of the fl ux-surface-averaged radial fl ux in 

the strong and weak Er case, respectively. The radial fl ux has 

a negative value, so it points inward to the plasma center. The 

inward fl ux arises from poloidal asymmetry, so an inward 

pinch velocity Vr ~ 1 [m/s] exists even in the case with weak 

Er. In the case with strong Er, not only the large magnitude of 

poloidal fl ow but also the gradient and curvature of poloidal 

fl ow increase the inward pinch velocity. Figure 6 shows that 

the radial fl ux has a maximum in the radial position where the 

poloidal fl ow shear is larger. That is coming from the form 

of the shear viscosity in Eq. (14) that combines the poloidal 

asymmetry of magnetic fi eld B and the gradient and curvature 

of the fl ow velocity.

The analysis of the two-dimensional structure reveals 

the existence of an inward particle pinch fl ow arising from 

poloidal asymmetry in the tokamak. This fi nding has a large 

impact on transport. Figure 7 (a) shows the relationship be-

tween the maximum of Mp and the particle pinch velocity. A 

moderate inward pinch velocity Vr ~ 1 [m/s] exists even in the 

weak Er case (like the L-mode). This velocity is equivalent 

to that observed in experiments. In the strong Er case, which 

is relevant to the H-mode or biased electrode experiments, a 

larger radial fl ow (inward pinch) is induced. The Mp profi les 

given to calculate Fig. 7 (a) is what is shown in Fig. 7 (b), 

and the increases in the maximum of Mp from 0.3 to 2.0 

correspond to the transition of the Er structure from fl at to the 

peaked (solitary). The increase of the maximum of Mp leads 

to an increase of the inward convective particle fl ux.

The increase of the inward convective particle fl ux has 

a large impact on the pedestal formation on the L/H transi-

tion. In the L/H transition, Mp changes abruptly, so that the 

Fig. 6  Radial profi les of the fl ux-surface-averaged particle 
fl ux in the case of weak homogeneous and strong 
inhomogeneous Er.

Fig. 7  (a) Relationship between the maximum of Mp and the 
particle pinch velocity. Increases of the maximum of 
Mp correspond to increases of the peak height of Mp 
as shown in (b).

(a)

(b)
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convective transport changes abruptly in the transport barrier 

region at the same time. The suppression of transport and 

reduction of diffusive transport occur in the transport barrier. 

The reduction of the diffusion coeffi cient explains steepening 

of the H-mode pedestal, but the time constant of the pedestal 

formation is diffi cult to explain. That is, the necessary time 

for reaching the fi nal pedestal gradient in the region with 

the width δ is given by τ = δ 2/Da, where Da is the reduced 

transport coeffi cient in the H-mode. It takes a longer time to 

form the pedestal (τ = 25 [ms] when δ = 5 [cm] and Da = 

0.1 [m2/s]). The H-mode pedestal can be formed in a much 

shorter time τ << 10 [ms] [8]. If the convective velocity 

increases abruptly, the time constant of the pedestal formation 

is τ = δ /V (τ = 5 [ms] when δ = 5 [cm] and V = 10 [m/s]), so 

a sudden increase of the inward pinch fl ux is candidate for the 

cause of the rapid H-mode pedestal formation.

Finally, we will discuss how to confi rm the two-dimen-

sional structure in experiments. There are few measurements 

of the poloidal structure. In the CCT tokamak, the poloidal 

density profi le was measured in electrode biasing H-mode 

[29]. The result showed poloidal variations that changed cor-

responding to the direction of the poloidal fl ow. However, it is 

not clear whether these variations arose from poloidal asym-

metry or deviations in the measurements. If the measurements 

were carried out on different fl ux surfaces, it is expected to 

show some kind of inhomogeneity. Therefore, to observe the 

poloidal structure, it is necessary to identify measurement 

points on the same fl ux surface. This is not easy in every 

experimental device. Up-down asymmetry is the most impor-

tant characteristic of the two-dimensional structure obtained 

in this paper, so confi rmation of this asymmetry is needed. 

One alternative way to accomplish this is to scan the density 

or potential profi les on the different major radius R locations. 

Measurements in different locations reveal different up-down 

asymmetries, provide that a two-dimensional structure exists. 

This is because the shock position is localized at one poloidal 

position. In addition, the shock position differs in accordance 

with Mp, so controlling the fl ow velocity by electrode biasing 

will be illuminating to confi rm the structure. Adjusting the ap-

plied voltage between the electrode and the limiter can make 

it possible to observe the shock on a cord of measurement, 

which cannot be moved freely in usual.

6.  Summary
In summary, multidimensionality was introduced into 

the H-mode barrier physics in tokamaks. The radial steep 

structure in H-mode and the poloidal shock structure with 

the large poloidal fl ow were taken into account in a self-

sustained system. The model equations with shear viscosity 

were derived. The magnitude of the shear viscosity determines 

the steepness and the position of the shock structure. In shock 

ordering, the structure of the fl ux-surface-averaged part is 

solved fi rst, and using this Mp profi le, a two-dimensional 

structure can be obtained iteratively. The one-dimensional 

model that has been used to study the L/H transition condi-

tion [7] is validated by this two-dimensional analysis. The 

radial solitary structure of the strong radial electric fi eld was 

found to be associated with the poloidal shock structure for 

the parameters that are relevant to H-mode plasmas. The ion 

and electron inward pinch fl ux exists, and has a magnitude of 

O(100) [m/s] in the H-mode transport barrier. Abrupt increase 

of this convective transport at the onset of transition was 

predicted by this theory, which provides a new explanation of 

rapid H-mode pedestal formation.

We applied some simplifi cations to calculate the two-

dimensional structure. The equation for a strong toroidal 

damping case is solved here. In this case Mp is proportional 

to the radial electric fi eld. There is no qualitative difference 

compared with the general fl ow case [27], but in general, the 

parallel and poloidal fl ow are coupled with each other, so the 

determination of the fl ow must be treated more explicitly in 

Eq. (9). The different mobility between ions and electrons is 

included in Eq. (9), but deviation from the Boltzmann relation 

of ions is not considered. Our main interest is the shock for-

mation, so these simplifi cations are made. More quantitative 

analysis will be carried out in a future work.
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