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Nonlinear simulations of a magnetohydrodynan{ddHD) plasma in full three-dimensional
geometry of the Large Helical Devi¢eHD) [O. Motojimaet al.,, Phys. Plasma, 1843(1999] are
conducted. A series of simulations shows growth of resistive ballooning instability, for which the
growth rate is seen to be proportional to the one-third power of the resistivity. Nonlinear saturation
of the excited mode and its slow decay are observed. Distinct ridge/valley structures in the pressure
are formed in the course of the nonlinear evolution. The compressibility and the viscous heating, as
well as the thermal conduction, are shown to be crucial to suppress the pressure deformations.
Indication of a pressure-driven relaxation phenomenon that leads to an equilibrium with broader
pressure profile is observed. @001 American Institute of Physic§DOI: 10.1063/1.1408624

I. INTRODUCTION of three-dimensional instability with low-modes, whera

This paper is concerned with an attemot to run a nonlindenotes the toroidal Fourier mode number. Most of the pre-
pap ) . np . vious research on linear analysis has been dedicated to ideal
ear magnetohydrodynami@HD) simulation of a helical

. . . ) MHD instabilities, and the properties of a resistive MHD
plasma that is executed in a full three-dimensioi3®) ge- . - . o .
) . . ; instabilities remain unclarifiedDevelopment of a 3D resis-
ometry. In particular, the behavior of plasma is studied for

the Large Helical DevicéLHD) configurationt The LHD tive linear code has been reported recehlyOn the other

system is a heliotron/torsatron type helical device with ahand, some experimental results suggest that plasma behav-

plane magnetic axis with two helical coils, where the pitCh|ors are often dominated by resistive instabilities for low-
period numbeiM — 10 and the aspect ratio of the major ra- Modes: For example, Sakakibagtal *? have reported that
tahe growth of the resistive interchange mode was as impor-

dius to the average minor radius of a plasma is 6.5. A serie ¢ as the ideal interch de in their C ¢ Helical
of experimental programs using the LHD are now under Wa)}an as the ideal Interchange mode In their Lompact Helica

and some successful results have been repériSihce System(CHS) experiment.

macro-scale plasma fluctuations in the LHD system are con- \onlinear investigations of helical systems have been
sidered to be dominated by pressure-driven instabilities, unconducted by making use of reduced MHD equations, which

derstanding of linear and nonlinear behaviors of these kind¥/ere first derived by St.ranl?%i'lt;here. are several works using
of instabilities is important to achieve good confinement. Al-réduced MHD equations,”™ which have successfully
though nonlinear behaviors of a MHD plasma have beerreated lown modes concerning internal disruption phenom-

extensively investigated for tokamak plasniase Mizugu-  €na- However, fully three-dimensional structures had to be
chi et al,? for examplg, little is known about helical plas- ©ut of the scope of this research because, from derivation, the

mas. reduced MHD systems could express effects of the three-
Here we concentrate on a MHD plasma to Studydimensional helical magnetic structure only in an averaged
pressure-driven instabilities in helical systems. This kind offanner. Thus, behaviors of ideal or resistive ballooning
instability is often investigated through linear stability analy- modes that strongly depend on local magnetic curvature ef-
sis and/or numerical simulations of reduced MHD equationsfects have not yet been understood.
One of the most successful approaches of stability analysis is In an attempt to investigate the complex nonlinear be-
the stellarator expansion method, which was introduced bjiaviors of a MHD plasma in a three-dimensional structure,
Greene and Johnsdmas well as the averaging method. Therewe have to execute fully three-dimensional MHD simula-
are an enormous number of works which employ these metrions without employing specific approximations for the
ods to analyze MHD linear stability of helical plasntds. structure. For this purpose, we have developed a new simu-
While linear stability analysis by means of the stellaratorlation code, which solves a full set of MHD equations in a
expansion method is essentially two-dimensional, there ifully three-dimensional toroidal geometry. This simulation
three-dimensional analysis, t88.Furthermore, recent nu- code is a natural extension of thenT codel’ which obtains
merical codes such ans3p’ andTERPSICHORE are used to  a fully three-dimensional equilibrium state without imposing
investigate the linear stability of three-dimensional heliotronthe nested flux assumption. Based on a preliminary trial of
equilibria. the code development,the nonlinear simulation code has
We have to note that development of the stability codesbeen improved to include effects of the shear viscosity and to
such ascAs3D and TERPSICHORE has permitted the analysis treat a full-torus system. We aim to understand the nonlinear
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behaviors of an MHD plasma in a helical system by making 1 ( AV, (9Vj) -
. 7

use of the newly developed code. The main target of oufij=7 %JF X
investigation is to study evolution and saturation of pressure- ) '
driven instabilities, which grow in the currentless equilibria The symbolsV;, B;, J; ande;; areith components of the

of helical plasmas. Another basic motivation of this study isvelocity vector, magnetic field vector, current vector and
to see whether or not the growth of mild pressure-driven(i,j) component of the rate-of-strain tensor in the Cartesian
instabilities can cause a kind of a relaxation process, namelygoordinate, respectively. The symbegisand p represent the

a transition from an initial excessive energy state to a stabldensity and pressure, respectively. The symgql repre-
state that a plasma chooses through redistribution of theents Edington’s anti-symmetric tensor. We take a sum from
plasma pressure. We emphasize that nonlinear investigatiahto 3 on repeated suffices. The conductivity, resistivity, and
of helical MHD plasma including fully three-dimensional shear viscosity are represented byy and u, respectively.
structures has seldom been attempted. There is not mudfquations(1)—(7) are already nondimensionalized by using
knowledge of nonlinear behaviors of helical plasmas. Al-the characteristic toroidal magnetic fieBl,, the toroidal
though our code can treat low<fully toroidal) modes by  Alfvén velocity V,=By/\upo defined by usingB,, the
solving the entire toroidal system, such a full-torus simula-permeabilityu, and characteristic densify,, and the char-
tion is expensive in terms of computation time. As a first stepacteristic length.y. The geometry is set to simulate the LHD

in the attempt to execute simulations in three-dimensionatonfiguration. The dissipative coefficienks», and u are
geometry, we impose the stellarator symmetry in this papemssumed to be constant and isotropic in our simulations so
We assume that some basic nature of the nonlinear behavidtat we start from the simplest model.

of pressure-driven instabilities can be observed even in this The MHD equationg1)—(7) are now described in the
restricted situation. Actually, as shown in Sec. lll, an indica-helical-toroidal coordinate systenu{*,u?,u®), which has

tion of a relaxation phenomenon caused by the nonlineabeen adopted in theinT code!’ The toroidal-helical coor-

evolution of mild unstable modes is found. dinate systemu(**,u?,u®) used here is described as

This paper is organized as follows. Section Il provides 1
outlines of our simulations. Basic equations, boundary con- U~*=u"+d=r cog6—hdg), (8)
ditions, and the discretization scheme are described there. , .
We also describe how to give an initial condition. Section IlI uT=rsin(6—he), ©)
presents the results of nonlinear simulations. Some observa- | 3_ _ b, (10)
tions in the linear and nonlinear regimes are described there.
Concluding remarks are in Sec. IV. by the minor radius of the torus distance from the origin of

the coordinate syster, the poloidal angleg and the toroi-

dal angle¢; see Fig. 1 in Harafujet all’ on the coordinate
IIl. OUTLINE OF SIMULATION SCHEMES system. Since we aim to study a MHD plasma in the LHD
A. MHD equations and boundary conditions geometry, we set=0 and a set of valueM =10 andh
=M/2 is adopted throughout this article. The MHD equa-
tions in this coordinate system are described in Appendix A.
We impose the stellarator symmetry to this system. The stel-
ap d larator symmetry consists &fl =10 periodic boundary con-

We solve the time evolution of a full set of nonlinear,
compressible, nonideatlissipative¢ MHD equations

a L;_Xi(PVi)' 1) dition on one-pitch period and a sort of symmetric condition
on the magnetic field ap=0 and at the middle of the one-
d(pVi) N K2 V.V pitch period¢=7/M. Boundary conditions on the density,
at X (PViVy) pressure, and velocity fields are determined so that the MHD

equationg1)—(7) are invariant when the boundary condition

_ a_p+6“ JBt PV, N 19 0_\/,” (2) is imposed on the magnetic field. Then, the toroidal mode
gx; - IKTITK axjax; - 3axi\ ax; /]’ number available in our simulation is multiples of 10, when
P the mode number is measured in a full-torus geometry. See
p ap Vv : ) ) S
—+Vj——=—yp——+(y—1) Appendix B for details of the toroidal boundary conditions in
gt IXi IX; our coordinate system.
9 J p In Fig. 1, the computational domain is drawn in a gray,
x| pdjdj+ P~ K( TR —) } (3)  twisted rectangular box. The computational domain covers a
y PP half-pitch period in the toroidalu®) direction. The plasma is
dB,; d assumed to be surrounded by a perfectly conducting wall. A
ot ik 5_Xi( ~ €amV1Bmt 731, (4) pair of helically twisted coils of the LHD device and a typi-
cal isosurface of the plasma pressure are drawn for the read-
J=e. 5_Bk ) ers’ convenience to understand the symmetry. The pressure
Ik Gy profile used to draw the isosurface is a result of a nonlinear
simulation which will be described in the next section. It is
D=2u| e~ E(a_\ﬁ) (‘9_\/1 ’ (6) seen that the overall pressure profile is twisted ten times in
3\ 9%/ \ 9% the toroidal direction.
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B. An initial equilibrium obtained by using the HINT
code

An initial equilibrium is prepared using thenT codel’
TheHINT code makes use of a relaxation scheme to obtain an
ideal MHD equilibrium. In thedINT code, an initial pressure
profile is given by

p()=(1—¢*)°, (12)

where ¢ represents an initial toroidal flux function. Param-
FIG. 1. Computational domain, LHD coils and an isosurface of the pressureatarsa andb controls the initial profile of the pressure. Here
A gray, twisted rectangular box represents the computational domain in t of tem=1 db=2 is adobted. The choi f
which an MHD plasma is simulated in our simulations. The box has half-& S€L O para_me ees= 1 andb=< Is adop e_ : e (2:2 oice o
pitch period in the toroidal direction. LHD coils and an isosurface of the parameters is the same as those of Ichiguethal == who
pressure obtained in our simulation are drawn in fully toroidal geometry. studied the Mercier stability of the LHD system by using the
VMEC code?® We study a case where the major radius of the
vacuum magnetic axiR,, is located atR,,=3.7m in the
real dimension. This case corresponds to a case where the
vacuum axis is slightly inwardly shiftedThe center of the

E i 1)—(7 i i iformly in th : : : . .
. quathns( )—( ). are dlscret|zed2 u;n ormly In_the helical coil for LHD is located at 3.9 m in the major radius.
helical-toroidal coordinate systenu{* ,u?,u®) and the spa- . ; - o
In this paper, we restrict ourselves to an initial equilibrium

tial differences are evaluated by the fourth-order central-

N . . whose central betg3, is 4%. According to a previous
finite-difference scheme. The resultant discrete equations arsefudyzz a part of magnetic surfaces for an equilibrium with

marched by the Runge-Kutta—Gill method, which hasy 3 7m andg,=4% is analyzed to be unstable for the
fourth-order accuracy in time. The number of grid points iNpiarcier criterion.

theu?, L_‘Z' u® directions are represented g, N; andNs, In Figs. 2a) and 2b), Poincare plots of the magnetic
respectively. Herés is a grid number for the half-period in fie|d lines on horizontally and vertically elongated poloidal
the toroidal direction. We have conducted simulations withsections at¢=0 and ¢=m/M, respectively, are shown.
N1=N,=49,N3=16 (lower-resolution, N;=N,=97,N3  Hereafter, in figures of Poincare plots and contour plots, the
=32 (medium-resolution and N;=N,=193N3=32 right-hand side represents the outer side of the torus both for
(higher-resolution We have confirmed the soundness of thethe horizontally or vertically elongated cross-sections. We
computations by checking that no significant difference apsee in Figs. @) and 2b) that the Shafranov shift has put the
pears in the structure of the fluctuation and the process of thgosition of the magnetic axis toward the outer side of the
mode growth between the medium- and higher-resolutioniorus. Consequently, the magnetic axis is observed relatively
computations. Here we report our numerical results with then the right-hand side in Figs.(&® and 2b). In Fig. 2c), the
medium- and higher-resolutions. profile of the rotational transforma/27r is shown. The ab-
When we discretize the nonlinear equations to solvescissa represents the averaged minor radius. In K. &
them numerically, numerical errors inevitably emerge, whichbird's-eye view of the pressure on a poloidal section is
are often called aliasing errorsee text by Roach®, for shown. It is seen that the pressure has a clear bell-shape,
examplé. Removal of aliasing errors is simple and easyWwhich is a natural result of the parameter aet1,b=2 for
when we impose periodic boundary conditions on the systerfhe initial pressure profile of theiNT code. In Fig. 2e), a
because we only have to operate a low-pass filter to the varRird’s-eye view of the toroidal current on the same poloidal
ables, as is often adopted by well-known spectral metfdds. Section as Fig. @) is shown. It is seen that the Pfirsch—
The cutoff wave number of a low-pass filter must be decideoSCh[.m’z‘r current is emerging on the center of the poloidal
by investigating the nonlinearity of the equations to beS€Ction, keeping the net toroidal current null. _
solved. However, it is not the case in this article because,  NOt€ here that theinT code does not necessarily pro-
boundary conditions in the* and u? directions are not vide a linearly stable equilibrium. Since dynamics of the

periodic. Instead of having a clearcut de-aliasing by using é)retiseu:"e,\,ge;%i:dliu?r totrzlrgfgenetifglgld “22?] |Z§xcrl]uded
low-pass filtering operation, here we make use of a smoot ;) rmputation, quitibrium e un-

. . . . §table, especially with an interchange or a ballooning insta-
ing scheme by taking the weighted-average of variables

reighorng rdpantE The scheme s adopted by i P 7 TSI VI 6 Dl s s v
zuguchiet al2 in their three-dimensional MHD simulations gs. & y y P g

: . . to its unstable nature.
of a spherical tokamak, to show satisfactory results. This

scheme contributes not only to the removal of aliasing errors

but to the stabilizing of the discretized system. Note thal; giMULATION RESULTS

relatively large-scale structures have the most unstable na- o o N

ture under the parameters used in this paper. Then the dé: Growth of a resistive ballooning instability

aliasing smoothing operation works only to remove small  Now we investigate time evolution of the MHD equa-
numerical oscillations and does not change the physical pictions (1)—(7). In what follows, the conductivityx=1
ture of the numerical results. x 10" % is fixed throughout this article. So far as we do not
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FIG. 2. Profiles of an initial equilib-
rium state obtained by theinT code.
Poincare plots of magnetic lines on a
horizontally and vertically elongated
poloidal sections¢p=0 and /M are
shown in(a) and(b), respectively. The
rotational transform/2s is shown in
(c). Birds-eye views of the pressure
and toroidal current on a poloidal sec-
tion are shown in(d) and (e), respec-
tively.
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describe explicitly, the resistivityy and the shear viscosify ~ and 3.16<10 ° are shown. The vertical axis is plotted in
are 3.16<10 ° and 2x10 3, respectively. A simulation log-scale. The origin of the abscissa is set to the time just
with this parameter set is conducted with the higher-before an exponential growth. In order to see plasma behav-
resolution computation. iors in the exponential growth period, we concentrate on a
In Fig. 3, time evolutions of the kinetic energies obtainedsimulation with »=3.16x 10 ° and observe pressure defor-
by the typical three simulationsy=1x107°, 1.78x10 mations. Contour plots of the pressure on horizontally and a
vertically elongated poloidal sectionstat 2007, are shown,
respectively, in Figs. @) and 4b). There are some deforma-
10 ' ' ' tions of the pressure contours on the outer side of the torus.
The nature of these deformations is shown in Figs) 4nd
4(d) by contour plots of the amplitude of the pressure fluc-
tuation on the horizontally and vertically elongated poloidal
sections at=200r,, respectively. We see that the pressure
fluctuation is localized around a circular region where the
pressure gradient is the steepest. The fluctuation is especially
,, large on the outer side of the torus. Note that the de-
/ stabilization effect of the magnetic curvature becomes stron-

w07 E gest on the outer side of the horizontally elongated poloidal
section for the heliotron type helical configuration. These
10 . . . observations suggest that the exponential growth is caused
0 =00 1000 1500 2000 by a ballooning instability. It is considered that a weak inter-
t change instability also contributes to the pressure deforma-

FIG. 3. Time evolution of the kinetic energy. Solid, dashed and dotted IinestIons because there are Smal_l Q.eformat.lpn? on the '.”ne.r side
represent runs with the resistivity=3.16x 10 °, 1.78<10°%, 1x 10 of the torus.(Recall that our initial equilibrium solution is

respectively. expected to be Mercier-unstablés time proceeds, wavy
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(b) 10
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n

(©) FIG. 5. Dependence of the growth rate of the excited mode on the resistivity
n. The black triangles and circles are associated with the viscpsityt

%1072 and 21073, respectively.

putations, for two values of the viscosify=1x10 2 and

2% 103, In all of the simulations, the exponential growth of
the kinetic energy and the wavy contours of the pressure on
the outer side of the torus are observed. In Fig. 5, the growth
rates are shown as a function of the resistivity. It is seen that
the growth rate is almost proportional " both for the
case of w=1x10"% and 2x10°3  Previous
investigation§?*have shown that both resistive interchange
and resistive ballooning instability bring growth rates pro-
portional to »'%. Considering the pressure deformation ob-
served in Figs. 4, these growths are identified to be caused by
the resistive ballooning instabilitj\We have to keep in mind
that linear analysis by Depassier and Coépir based on a
large-aspect-ratio expansion. Since the aspect ratio of the
LHD is finite (6.5, we have to be careful to compare our
results with their analysis.

. . . The poloidal mode number of the ballooning instability
FIG. 4. Pressure contours on horizontally and vertically elongated poloidal . . . . . . .
sections att=200r, are shown in(a) and (b), respectively. Contours of observed in these simulations is mamiy= 16, which is
pressure fluctuations associated w(ith and (b) are shown in(c) and (d), identified by counting the number of ridges in the pressure
respectively. Contours of pressure fluctuations=a#00r, are shown i(d)  contours, the number of local maxima in the amplitude of the
and(f), respectively. pressure fluctuation, and the number of islands observed in
Poincare plots of the magnetic field ling&Recall that the
ballooning mode structure is realized by a coupled set of
contours(a ridge/valley structudeof the pressure grow to- poloidal modes when it is described in the Fourier spgace.
ward the edge regions, especially on the outer side of th8ince the excitation of the ballooning mode is first observed
torus. In Figs. 4e) and 4f), contour plots of the amplitude of around the region/27=2/3, where the pressure gradient
the pressure fluctuation &t 4007, are shown. We observe becomes the steepest, the toroidal mode number is identified
that contours are modulated strongly. At this stage of théo ben=10, which is the smallest toroidal number available
time evolution, the energy growth is no longer exponentialin our simulations. Under the value of the shear viscosity we
and eventually saturates by nonlinear effects, while the dedsed, modes with poloidal numbers much greater tiran
formation is still dominated by the most unstable mode. An=16 are suppressed. We observed little dependence of the
isosurface of the pressuretat 400r, is seen in Fig. 1. Itis number of these ridges in the pressure contours, or the po-
clearly seen that ridges of the pressure isosurface growwidal mode number of the most unstable mode, on the resis-
strongly toward the outer side of the torus, while the ridgedivity.
in the inner side of the torus remain quite small. Now we pay attention to the growth rates associated
In order to look closely into the origin of the exponential with »=<1.78x10 ° in Fig. 5. Some of the growth rates in
growth and pressure deformations observed above, we cothis resistivity region do not obey the scaling”®. We note
duct a survey on various values of the resistivity in a ranggwo comments here. One is that growth rates wjiik 1
1x10 8<%=<3.16x10 * by the medium-resolution com- x10 2 and #<1x10 ® give almost the same value with

)
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(a)

FIG. 7. Poincare plots of the magnetic field lines(enthe horizontally and
(b) vertically elongated poloidal sections.

ridges are growing toward the radial direction of a magnetic
coordinate®. These ridges are formed in the period of the
growth of the kinetic energy. Their shapes remain almost
unchanged after the nonlinear saturation. A detailed compari-
son of the pressure profile at the time of the saturation (
=520r,, figure is omitted and that in the decay stage
=1000r,, however, reveals that the pressure gradient tends
to be less steep in the decay stage, especially on the inner
side of the torus.

Influence of the nonlinear evolution on the plasma con-
finement is shown in Figs. 7 by the Poincare plots of the
magnetic field lines on the horizontally and vertically elon-
gated poloidal sections at=1000r,. The magnetic field
FIG. 6. Birds-eye views of the pressure ¢@ horizontally and(b) verti-  lines are stochastic in the steep pressure gradient region due
cally elongated poloidal sections tat 1000r, . to the growth of the mode. The overall pressure profile is

flattened in the stochastic field region. Clear magnetic sur-

B 5 B 6 ) faces remain at the center region of the plasma, however. The

casesu=1X10~and»=1x10"". We consider that a nu- pjasma is still well confined inside the nested magnetic sur-

merical dissipation caused by the finite difference scheme,ces |t is also observed that remains of magnetic surfaces

exceeds the physical effect of the resistivity for<1 470 il in their clear shapes on the edge region of the

% 10" ®. Then the effective value of the resistivity should be plasma. These results show that the plasma evolution ob-
greater than X 10 ® even wheny is set smaller than 1 served here is not very destructive.

X108, to cause the larger va}ue of the growth rate than the |y order to identify a physical mechanism which domi-
value expected by the-scaling. Another comment is on pates these pressure deformations, we investigate the pres-
the growth rate for casgg=2x10"° and »<1.78<10°%. ¢, e budget equation

Their small growth rates lead the plasma to the long expo-

sure under conductive effects and ohmic heating during thé_jf d3X:_J'(9p_de3X_J'( 1 (Q—de3x—( 1

period of the formation of the eigenfunction, as observed irdt P 29 Y P IX; Y

Fig. 3. We deduce that exposure by the nonideal dissipation

effects for sufficiently long period causes change of the equi- % J' i( _ Ki P d3x+ (y—1)
librium and brings departure of the growth rate from the X IXj p
n*-scaling.
xf ®d3x+(y—1)j 73;J; d3x. (12)

B. Nonlinear deformation of the pressure profile Here [ d3x represents the volume integral over the half-pitch

Next we see deformation of the pressure after the nonperiod of the LHD torus.
linear saturation of the kinetic energy observed in Fig. 3.  Shown in Figs. 8 is the profile of the integrand in each
Again we concentrate on the higher-resolution computatiorierm of the right-hand side of E¢12) observed on the hori-
with 7=3.16x10 % and u=2x10"3. zontally elongated poloidal section tat 5207, , namely,(a)

In Figs. §a) and Gb), bird's-eye views of the pressure the pressure flowb) the compressionc) the thermal con-
on the horizontally and vertically elongated poloidal sectionsduction, (d) the viscous heating, an@) the Ohmic heating.
at t=1000r, are shown, respectively. It is clearly observedIn Figs. §a) through &e) plotted in bird’s-eye view, the same
that the ridges in the deformed pressure structure are twinddvel of normalization is used to compare the amplitude of
around the core part of a confined plasma. It looks as if theseach term. The horizontal plane corresponds to the zero
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in the pressure budget, or the net increase in the total pres-
sure energy, is attributed to the viscous heating. Compared
with the initial equilibrium, the increase in the total pressure
energy is about 5% dt=500r,. Since the viscous heating
term is a second-order term as for the velocity, the predomi-
nant contribution on the net balance can be considered as a
direct outcome of nonlinearity. Nonlinearity is revealed also
in the profile of the Ohmic heating, which has the nature of a
positive definite. Compared with the viscous heating term,
however, the contribution of the Ohmic heating term on the
net balance is observed to be significantly smaller, less than
one-tenth of the contribution of the viscous heating, through-
out the evolution of the process.

The local contribution of these terms can be examined
more closely by the profiles shown in Figs. 8. It is observed
that the pressure flow is the dominant term in the overall
magnitude, and shows almost the same behavior with the
structure of the pressure fluctuation. Namely, it takes a posi-
tive value at the pressure ridges and a negative value at the
pressure valleys. On the other hand, all other terms show
out-phase behavior with the ridge/valley structure of the
pressure fluctuation. Thus the pressure flow term is revealed
to be the agent that forms the deformed pressure structure,
while other terms act to suppress the deformations. The sec-
ond dominant term up to the saturation of the growth is the
compression term, where the overall absolute magnitude is
about two-thirds of that of the pressure flow term. This sug-
gests the importance of the nature of compressibility in the
evolution of the ballooning mode. As is shown in Fig. 8, the

(b)G

(c) '

(d) I suppression effects of the thermal conduction and the viscous
(e) l

heating are also significant. The thermal conduction term be-

comes the second dominant after the saturation of the

growth. It takes a large value at the sides of the pressure
ridges and valleys, where the pressure gradient is steep due
to the nonlinear evolution. On the other hand, the viscous

heating term reveals a peaked profile, in particular, at the

deepest location in the pressure valleys. It acts to increase the
pressure in valley regions and make the pressure gradient
less steep there.

IV. CONCLUDING REMARKS

We have reported results of nonlinear simulation of an
MHD plasma that is executed in the full three-dimensional
geometry of the LHD system. In this paper, we focused on
plasma behavior in the medium poloidal mode number range
FIG. 8. Birds’-eye views of the profile of th&) pressure flow(b) com- by |mpo§|ng t.he Sj[era"ator symmetry boundary condlthn§ n
pression{c) thermal conduction(d) viscous heating, an) Ohmic heating € toroidal direction. Growth and saturation of the resistive
terms in the pressure budget equation on the horizontally elongated poloid&@allooning modes were observed. We found that the growth
section att=520r, . rate of the kinetic energy in the linear growth period were

almost proportional tay’%.

In the nonlinear stages of our simulations, we observed
level, and regions with negative value are expressed by darthe formation of a sharp ridge structure in the pressure pro-
gray. In the estimation of the net pressure balance by théle. The formation of the ridge structure was investigated
volume integration, contributions from the positive andthrough the estimation of the right-hand sitRHS) of the
negative parts are almost cancelled out to each other for theressure budget equatidt?). It was shown that the local
pressure flow, the compressibility and the thermal conductioplasma deformations were driven by the pressure flow term
terms, respectively. Thus the greatest part of the net balan@nd suppressed mainly by the compression, viscous heating
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pears in helical plasmas in its pure nature, they are consid-
ered to be a good target for studying the traits of pressure-
driven relaxation. One direction in the extension of the
present approach of computation may be to extract a guiding
principle that governs such a pressure-driven relaxation pro-
cess. Such a principle, if any, can also be applied to other
configurations, like the tokamak.

ACKNOWLEDGMENTS

One of the authorgH.M.) would like to acknowledge
his thanks to Dr. Nakajima, Dr. Sugama, Dr. Ichiguchi, Dr.
Kanno, and Dr. T-H. Watanabe in NIFS and Professor W. A.
Cooper in Ecole Polytechnique Federale de Lausanne for
fruitful discussion. This simulation research was conducted
by making use of the supercomputer NEC SX-4/64M2 in the
theory and computer simulation center of NIFS.

This work was partially supported by a Grant-in-Aid for
Scientific Research from the Ministry of Education, Culture,
Sports, Science and Technology in Japan.

FIG. 9. An equilibrium reached by the plasma as a result of the pressure-
driven relaxation. Contour plots of the pressure are shown ottahleori-

zontally elongated poloidal section, aril) vertically elongated poloidal APPENDIX A: THE MHD EQUATIONS IN THE
section. Poincare plots of the magnetic field lines are shown ondhe HELICAL-TOROIDAL COORDINATE SYSTEM

horizontally elongated poloidal section, aftl vertically elongated poloidal
section.

The MHD equationg1)—(7) are described in the helical-

toroidal coordinate system Eqg®)—(10) as follows:

and thermal conduction terms. It is also noteworthy that the
viscous heating term contributes much more to the net pres-
sure increase than the ohmic heating.

In the description of Figs. 6, we noted that pressure de-
formations on the inner side of the torus were becoming
smaller. We have also seen in Figs. 7 that the instability
observed in this article is not so destructive. Since the kinetic
energy decays monotonically after 5207, , it may suggest
a transition of the plasma to a new equilibrium state. In order
to examine this tendency, we conducted a very long simula-
tion with the medium resolution, the resistivity and viscosity
being the same with the higher-resolution simulation shown
in the previous section. Contour plots of the pressure and
Poincare plots of the magnetic field lines on the horizontally
and vertically elongated poloidal sectionstat4000r, are
shown in Figs. 9. We observe that the pressure profile is
well-shaped and much broader than the initial profile. The
magnetic surfaces are recovered clearly in Figs. 9, although
the stored total pressure energy is increased more than 10%
compared with the initial equilibrium. As far as the general
tendency is concerned, the result that the broad pressure pro-
file is spontaneously realized is consistent with observation
in the actual LHD experiments, in which the plasma pressure
usually reveals broad profif€ Although a computation with
finer resolutions may be required to confirm such a long time
scale behavior, the equilibrium shown in Figs. 9 is a state
that is recovered from the midway disordered state. It can be
viewed as a state that the plasma reaches as a result of non-
linear relaxation processes through redistribution of the
plasma pressure. Since the pressure-driven instability ap-
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— a(utu?ud) viutu?, Aud)=ovl(ut, —u? - Aud), (B9)
M= —————. (A9)
&(¥}’X2’X3) v2(ut,u?,Aud)=—v?(ut,—u? —Aud), (B10)
Hereg;;, g", andg are the {,j)-components of covariant 3,1 2 A3 3.1 2 A3
and contravariant components of the metric tensor and pA(ULUSAUT = —ui(uh, —ut, —AuT, (B1D
square of the Jacobian, respectively. The symbol on the poloidal sectiogp=0, and
[h] [h} L ol ip , 99ip 99 AL0) p(u u% /M — AU%) = p(—uh U, 1M +Au%),  (B12)
Ty (TS —t —+ —
) jij =29 oul gu' uP p(ut,u?, m/IM—Aud)=p(—utu®, m/M+Au®, (B13)
is the Christoffel symbol. Symbols, b', andj' representth viut,u?, M — Aud)= —vi(—ut,u? w/ M+ Aud),
contravariant components of the velocity, magnetic field, and (B14)

current vectors, respectively, while variable with subscripts

2/041,,2 _ 3y —.,2(_ 1,2 3
represent contravariant components which can be obtained vA(un % /M =AU =0 (—unut, M+ AuT),
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M represents a 83 Jacobian tensor and it$,{) compo- v3(uhu?, m/M = Aud) = —v3(—ut,u?, w/M+AUd),
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