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Nonlinear simulation of resistive ballooning modes
in the Large Helical Device
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Gifu 509-5292, Japan

~Received 2 May 2001; accepted 13 August 2001!

Nonlinear simulations of a magnetohydrodynamic~MHD! plasma in full three-dimensional
geometry of the Large Helical Device~LHD! @O. Motojimaet al., Phys. Plasmas6, 1843~1999!# are
conducted. A series of simulations shows growth of resistive ballooning instability, for which the
growth rate is seen to be proportional to the one-third power of the resistivity. Nonlinear saturation
of the excited mode and its slow decay are observed. Distinct ridge/valley structures in the pressure
are formed in the course of the nonlinear evolution. The compressibility and the viscous heating, as
well as the thermal conduction, are shown to be crucial to suppress the pressure deformations.
Indication of a pressure-driven relaxation phenomenon that leads to an equilibrium with broader
pressure profile is observed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1408624#
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I. INTRODUCTION

This paper is concerned with an attempt to run a non
ear magnetohydrodynamic~MHD! simulation of a helical
plasma that is executed in a full three-dimensional~3D! ge-
ometry. In particular, the behavior of plasma is studied
the Large Helical Device~LHD! configuration.1 The LHD
system is a heliotron/torsatron type helical device with
plane magnetic axis with two helical coils, where the pit
period numberM510 and the aspect ratio of the major r
dius to the average minor radius of a plasma is 6.5. A se
of experimental programs using the LHD are now under w
and some successful results have been reported.2 Since
macro-scale plasma fluctuations in the LHD system are c
sidered to be dominated by pressure-driven instabilities,
derstanding of linear and nonlinear behaviors of these ki
of instabilities is important to achieve good confinement. A
though nonlinear behaviors of a MHD plasma have be
extensively investigated for tokamak plasmas~see Mizugu-
chi et al.,3 for example!, little is known about helical plas
mas.

Here we concentrate on a MHD plasma to stu
pressure-driven instabilities in helical systems. This kind
instability is often investigated through linear stability ana
sis and/or numerical simulations of reduced MHD equatio
One of the most successful approaches of stability analys
the stellarator expansion method, which was introduced
Greene and Johnson,4 as well as the averaging method. The
are an enormous number of works which employ these m
ods to analyze MHD linear stability of helical plasmas.5,6

While linear stability analysis by means of the stellara
expansion method is essentially two-dimensional, there
three-dimensional analysis, too.7,8 Furthermore, recent nu
merical codes such asCAS3D9 andTERPSICHORE10 are used to
investigate the linear stability of three-dimensional heliotr
equilibria.

We have to note that development of the stability cod
such asCAS3D andTERPSICHORE, has permitted the analysi
4871070-664X/2001/8(11)/4870/9/$18.00
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of three-dimensional instability with low-n modes, wheren
denotes the toroidal Fourier mode number. Most of the p
vious research on linear analysis has been dedicated to
MHD instabilities, and the properties of a resistive MH
instabilities remain unclarified.~Development of a 3D resis
tive linear code has been reported recently.11! On the other
hand, some experimental results suggest that plasma be
iors are often dominated by resistive instabilities for lown
modes. For example, Sakakibaraet al.12 have reported tha
the growth of the resistive interchange mode was as imp
tant as the ideal interchange mode in their Compact Hel
System~CHS! experiment.

Nonlinear investigations of helical systems have be
conducted by making use of reduced MHD equations, wh
were first derived by Strauss.13 There are several works usin
reduced MHD equations,14–16 which have successfully
treated low-n modes concerning internal disruption pheno
ena. However, fully three-dimensional structures had to
out of the scope of this research because, from derivation
reduced MHD systems could express effects of the thr
dimensional helical magnetic structure only in an averag
manner. Thus, behaviors of ideal or resistive balloon
modes that strongly depend on local magnetic curvature
fects have not yet been understood.

In an attempt to investigate the complex nonlinear b
haviors of a MHD plasma in a three-dimensional structu
we have to execute fully three-dimensional MHD simu
tions without employing specific approximations for th
structure. For this purpose, we have developed a new si
lation code, which solves a full set of MHD equations in
fully three-dimensional toroidal geometry. This simulatio
code is a natural extension of theHINT code,17 which obtains
a fully three-dimensional equilibrium state without imposin
the nested flux assumption. Based on a preliminary tria
the code development,18 the nonlinear simulation code ha
been improved to include effects of the shear viscosity an
treat a full-torus system. We aim to understand the nonlin
0 © 2001 American Institute of Physics
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behaviors of an MHD plasma in a helical system by mak
use of the newly developed code. The main target of
investigation is to study evolution and saturation of pressu
driven instabilities, which grow in the currentless equilibr
of helical plasmas. Another basic motivation of this study
to see whether or not the growth of mild pressure-driv
instabilities can cause a kind of a relaxation process, nam
a transition from an initial excessive energy state to a sta
state that a plasma chooses through redistribution of
plasma pressure. We emphasize that nonlinear investiga
of helical MHD plasma including fully three-dimension
structures has seldom been attempted. There is not m
knowledge of nonlinear behaviors of helical plasmas.
though our code can treat low-n ~fully toroidal! modes by
solving the entire toroidal system, such a full-torus simu
tion is expensive in terms of computation time. As a first s
in the attempt to execute simulations in three-dimensio
geometry, we impose the stellarator symmetry in this pa
We assume that some basic nature of the nonlinear beha
of pressure-driven instabilities can be observed even in
restricted situation. Actually, as shown in Sec. III, an indic
tion of a relaxation phenomenon caused by the nonlin
evolution of mild unstable modes is found.

This paper is organized as follows. Section II provid
outlines of our simulations. Basic equations, boundary c
ditions, and the discretization scheme are described th
We also describe how to give an initial condition. Section
presents the results of nonlinear simulations. Some obse
tions in the linear and nonlinear regimes are described th
Concluding remarks are in Sec. IV.

II. OUTLINE OF SIMULATION SCHEMES

A. MHD equations and boundary conditions

We solve the time evolution of a full set of nonlinea
compressible, nonideal~dissipative! MHD equations

]r
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]Vj

]xi
D . ~7!

The symbolsVi , Bi , Ji and ei j are i th components of the
velocity vector, magnetic field vector, current vector a
( i , j ) component of the rate-of-strain tensor in the Cartes
coordinate, respectively. The symbolsr andp represent the
density and pressure, respectively. The symbole i jk repre-
sents Edington’s anti-symmetric tensor. We take a sum fr
1 to 3 on repeated suffices. The conductivity, resistivity, a
shear viscosity are represented byk,h andm, respectively.
Equations~1!–~7! are already nondimensionalized by usin
the characteristic toroidal magnetic fieldB0 , the toroidal
Alfvén velocity Va5B0 /Am0r0 defined by usingB0 , the
permeabilitym0 and characteristic densityr0 , and the char-
acteristic lengthL0. The geometry is set to simulate the LH
configuration. The dissipative coefficientsk,h, and m are
assumed to be constant and isotropic in our simulations
that we start from the simplest model.

The MHD equations~1!–~7! are now described in the
helical-toroidal coordinate system (u1* ,u2,u3), which has
been adopted in theHINT code.17 The toroidal-helical coor-
dinate system (u1* ,u2,u3) used here is described as

u1* 5u11d5r cos~u2hf!, ~8!

u25r sin~u2hf!, ~9!

u352f, ~10!

by the minor radius of the torusr, distance from the origin of
the coordinate systemd, the poloidal angleu and the toroi-
dal anglef; see Fig. 1 in Harafujiet al.17 on the coordinate
system. Since we aim to study a MHD plasma in the LH
geometry, we setd50 and a set of valuesM510 andh
5M /2 is adopted throughout this article. The MHD equ
tions in this coordinate system are described in Appendix
We impose the stellarator symmetry to this system. The s
larator symmetry consists ofM510 periodic boundary con
dition on one-pitch period and a sort of symmetric conditi
on the magnetic field atf50 and at the middle of the one
pitch periodf5p/M . Boundary conditions on the densit
pressure, and velocity fields are determined so that the M
equations~1!–~7! are invariant when the boundary conditio
is imposed on the magnetic field. Then, the toroidal mo
number available in our simulation is multiples of 10, wh
the mode number is measured in a full-torus geometry.
Appendix B for details of the toroidal boundary conditions
our coordinate system.

In Fig. 1, the computational domain is drawn in a gra
twisted rectangular box. The computational domain cove
half-pitch period in the toroidal (u3) direction. The plasma is
assumed to be surrounded by a perfectly conducting wal
pair of helically twisted coils of the LHD device and a typ
cal isosurface of the plasma pressure are drawn for the r
ers’ convenience to understand the symmetry. The pres
profile used to draw the isosurface is a result of a nonlin
simulation which will be described in the next section. It
seen that the overall pressure profile is twisted ten time
the toroidal direction.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Equations ~1!–~7! are discretized uniformly in the
helical-toroidal coordinate system (u1* ,u2,u3) and the spa-
tial differences are evaluated by the fourth-order cent
finite-difference scheme. The resultant discrete equations
marched by the Runge–Kutta–Gill method, which h
fourth-order accuracy in time. The number of grid points
the u1, u2, u3 directions are represented asN1 , N2 andN3 ,
respectively. HereN3 is a grid number for the half-period in
the toroidal direction. We have conducted simulations w
N15N2549,N3516 ~lower-resolution!, N15N2597,N3

532 ~medium-resolution!, and N15N25193,N3532
~higher-resolution!. We have confirmed the soundness of t
computations by checking that no significant difference
pears in the structure of the fluctuation and the process o
mode growth between the medium- and higher-resolu
computations. Here we report our numerical results with
medium- and higher-resolutions.

When we discretize the nonlinear equations to so
them numerically, numerical errors inevitably emerge, wh
are often called aliasing errors~see text by Roache,19 for
example!. Removal of aliasing errors is simple and ea
when we impose periodic boundary conditions on the sys
because we only have to operate a low-pass filter to the v
ables, as is often adopted by well-known spectral method20

The cutoff wave number of a low-pass filter must be decid
by investigating the nonlinearity of the equations to
solved. However, it is not the case in this article beca
boundary conditions in theu1* and u2 directions are not
periodic. Instead of having a clearcut de-aliasing by usin
low-pass filtering operation, here we make use of a smo
ing scheme by taking the weighted-average of variable
neighboring grid points.21 The scheme was adopted by M
zuguchiet al.3 in their three-dimensional MHD simulation
of a spherical tokamak, to show satisfactory results. T
scheme contributes not only to the removal of aliasing err
but to the stabilizing of the discretized system. Note t
relatively large-scale structures have the most unstable
ture under the parameters used in this paper. Then the
aliasing smoothing operation works only to remove sm
numerical oscillations and does not change the physical
ture of the numerical results.

FIG. 1. Computational domain, LHD coils and an isosurface of the press
A gray, twisted rectangular box represents the computational domai
which an MHD plasma is simulated in our simulations. The box has h
pitch period in the toroidal direction. LHD coils and an isosurface of
pressure obtained in our simulation are drawn in fully toroidal geometr
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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B. An initial equilibrium obtained by using the HINT
code

An initial equilibrium is prepared using theHINT code.17

TheHINT code makes use of a relaxation scheme to obtain
ideal MHD equilibrium. In theHINT code, an initial pressure
profile is given by

p~c!5~12ca!b, ~11!

wherec represents an initial toroidal flux function. Param
etersa andb controls the initial profile of the pressure. He
a set of parametersa51 andb52 is adopted. The choice o
parameters is the same as those of Ichiguchiet al.22 who
studied the Mercier stability of the LHD system by using t
VMEC code.23 We study a case where the major radius of t
vacuum magnetic axisRax is located atRax53.7 m in the
real dimension. This case corresponds to a case where
vacuum axis is slightly inwardly shifted.~The center of the
helical coil for LHD is located at 3.9 m in the major radius!
In this paper, we restrict ourselves to an initial equilibriu
whose central betab0 is 4%. According to a previous
study,22 a part of magnetic surfaces for an equilibrium wi
Rax53.7 m andb054% is analyzed to be unstable for th
Mercier criterion.

In Figs. 2~a! and 2~b!, Poincare plots of the magneti
field lines on horizontally and vertically elongated poloid
sections atf50 and f5p/M , respectively, are shown
Hereafter, in figures of Poincare plots and contour plots,
right-hand side represents the outer side of the torus both
the horizontally or vertically elongated cross-sections.
see in Figs. 2~a! and 2~b! that the Shafranov shift has put th
position of the magnetic axis toward the outer side of
torus. Consequently, the magnetic axis is observed relati
in the right-hand side in Figs. 2~a! and 2~b!. In Fig. 2~c!, the
profile of the rotational transformi/2p is shown. The ab-
scissa represents the averaged minor radius. In Fig. 2~d! a
bird’s-eye view of the pressure on a poloidal section
shown. It is seen that the pressure has a clear bell-sh
which is a natural result of the parameter seta51,b52 for
the initial pressure profile of theHINT code. In Fig. 2~e!, a
bird’s-eye view of the toroidal current on the same poloid
section as Fig. 2~d! is shown. It is seen that the Pfirsch
Schlüter current is emerging on the center of the poloid
section, keeping the net toroidal current null.

Note here that theHINT code does not necessarily pro
vide a linearly stable equilibrium. Since dynamics of t
pressure perpendicular to the magnetic field lines is exclu
in the HINT computation, theHINT equilibrium can be un-
stable, especially with an interchange or a ballooning ins
bility. In simulations with an initial equilibrium as shown in
Figs. 2, an instability is driven by the pressure gradient d
to its unstable nature.

III. SIMULATION RESULTS

A. Growth of a resistive ballooning instability

Now we investigate time evolution of the MHD equa
tions ~1!–~7!. In what follows, the conductivityk51
31026 is fixed throughout this article. So far as we do n

e.
in
-
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FIG. 2. Profiles of an initial equilib-
rium state obtained by theHINT code.
Poincare plots of magnetic lines on
horizontally and vertically elongated
poloidal sections,f50 andp/M are
shown in~a! and~b!, respectively. The
rotational transformi/2p is shown in
~c!. Birds’-eye views of the pressure
and toroidal current on a poloidal sec
tion are shown in~d! and ~e!, respec-
tively.
er

ed

n
just
av-

n a
r-
d a

-
rus.

c-
al
re
he
ially

de-
on-
dal
se
sed

er-
ma-
side

ine
describe explicitly, the resistivityh and the shear viscositym
are 3.1631026 and 231023, respectively. A simulation
with this parameter set is conducted with the high
resolution computation.

In Fig. 3, time evolutions of the kinetic energies obtain
by the typical three simulations,h5131026, 1.7831026

FIG. 3. Time evolution of the kinetic energy. Solid, dashed and dotted l
represent runs with the resistivityh53.1631026, 1.7831026, 131026,
respectively.
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
-

and 3.1631026 are shown. The vertical axis is plotted i
log-scale. The origin of the abscissa is set to the time
before an exponential growth. In order to see plasma beh
iors in the exponential growth period, we concentrate o
simulation withh53.1631026 and observe pressure defo
mations. Contour plots of the pressure on horizontally an
vertically elongated poloidal sections att5200tA are shown,
respectively, in Figs. 4~a! and 4~b!. There are some deforma
tions of the pressure contours on the outer side of the to
The nature of these deformations is shown in Figs. 4~c! and
4~d! by contour plots of the amplitude of the pressure flu
tuation on the horizontally and vertically elongated poloid
sections att5200tA , respectively. We see that the pressu
fluctuation is localized around a circular region where t
pressure gradient is the steepest. The fluctuation is espec
large on the outer side of the torus. Note that the
stabilization effect of the magnetic curvature becomes str
gest on the outer side of the horizontally elongated poloi
section for the heliotron type helical configuration. The
observations suggest that the exponential growth is cau
by a ballooning instability. It is considered that a weak int
change instability also contributes to the pressure defor
tions because there are small deformations on the inner
of the torus.~Recall that our initial equilibrium solution is
expected to be Mercier-unstable.! As time proceeds, wavy

s
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contours~a ridge/valley structure! of the pressure grow to
ward the edge regions, especially on the outer side of
torus. In Figs. 4~e! and 4~f!, contour plots of the amplitude o
the pressure fluctuation att5400tA are shown. We observ
that contours are modulated strongly. At this stage of
time evolution, the energy growth is no longer exponen
and eventually saturates by nonlinear effects, while the
formation is still dominated by the most unstable mode.
isosurface of the pressure att5400tA is seen in Fig. 1. It is
clearly seen that ridges of the pressure isosurface g
strongly toward the outer side of the torus, while the ridg
in the inner side of the torus remain quite small.

In order to look closely into the origin of the exponenti
growth and pressure deformations observed above, we
duct a survey on various values of the resistivity in a ran
131026<h<3.1631024 by the medium-resolution com

FIG. 4. Pressure contours on horizontally and vertically elongated polo
sections att5200tA are shown in~a! and ~b!, respectively. Contours of
pressure fluctuations associated with~a! and ~b! are shown in~c! and ~d!,
respectively. Contours of pressure fluctuations att5400tA are shown in~d!
and ~f!, respectively.
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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putations, for two values of the viscositym5131023 and
231023. In all of the simulations, the exponential growth
the kinetic energy and the wavy contours of the pressure
the outer side of the torus are observed. In Fig. 5, the gro
rates are shown as a function of the resistivity. It is seen
the growth rate is almost proportional toh1/3 both for the
case of m5131023 and 231023. Previous
investigations15,24have shown that both resistive interchan
and resistive ballooning instability bring growth rates pr
portional toh1/3. Considering the pressure deformation o
served in Figs. 4, these growths are identified to be cause
the resistive ballooning instability.@We have to keep in mind
that linear analysis by Depassier and Cooper24 is based on a
large-aspect-ratio expansion. Since the aspect ratio of
LHD is finite ~6.5!, we have to be careful to compare o
results with their analysis.#

The poloidal mode number of the ballooning instabili
observed in these simulations is mainlym516, which is
identified by counting the number of ridges in the press
contours, the number of local maxima in the amplitude of
pressure fluctuation, and the number of islands observe
Poincare plots of the magnetic field lines.~Recall that the
ballooning mode structure is realized by a coupled set
poloidal modes when it is described in the Fourier space25!
Since the excitation of the ballooning mode is first observ
around the regioni/2p.2/3, where the pressure gradie
becomes the steepest, the toroidal mode number is ident
to ben510, which is the smallest toroidal number availab
in our simulations. Under the value of the shear viscosity
used, modes with poloidal numbers much greater thanm
516 are suppressed. We observed little dependence o
number of these ridges in the pressure contours, or the
loidal mode number of the most unstable mode, on the re
tivity.

Now we pay attention to the growth rates associa
with h<1.7831026 in Fig. 5. Some of the growth rates i
this resistivity region do not obey the scalingh1/3. We note
two comments here. One is that growth rates withm51
31023 and h,131026 give almost the same value wit

al

FIG. 5. Dependence of the growth rate of the excited mode on the resist
h. The black triangles and circles are associated with the viscositym51
31023 and 231023, respectively.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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casesm5131023 andh5131026. We consider that a nu
merical dissipation caused by the finite difference sche
exceeds the physical effect of the resistivity forh<1
31026. Then the effective value of the resistivity should
greater than 131026 even whenh is set smaller than 1
31026, to cause the larger value of the growth rate than
value expected by theh1/3-scaling. Another comment is o
the growth rate for casesm5231023 andh<1.7831026.
Their small growth rates lead the plasma to the long ex
sure under conductive effects and ohmic heating during
period of the formation of the eigenfunction, as observed
Fig. 3. We deduce that exposure by the nonideal dissipa
effects for sufficiently long period causes change of the eq
librium and brings departure of the growth rate from t
h1/3-scaling.

B. Nonlinear deformation of the pressure profile

Next we see deformation of the pressure after the n
linear saturation of the kinetic energy observed in Fig.
Again we concentrate on the higher-resolution computa
with h53.1631026 andm5231023.

In Figs. 6~a! and 6~b!, bird’s-eye views of the pressur
on the horizontally and vertically elongated poloidal sectio
at t51000tA are shown, respectively. It is clearly observ
that the ridges in the deformed pressure structure are tw
around the core part of a confined plasma. It looks as if th

FIG. 6. Birds’-eye views of the pressure on~a! horizontally and~b! verti-
cally elongated poloidal sections att51000tA .
Downloaded 02 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
e

e

-
e

n
n
i-

-
.
n

s

ed
se

ridges are growing toward the radial direction of a magne
coordinate.6 These ridges are formed in the period of t
growth of the kinetic energy. Their shapes remain alm
unchanged after the nonlinear saturation. A detailed comp
son of the pressure profile at the time of the saturationt
5520tA , figure is omitted! and that in the decay staget
51000tA , however, reveals that the pressure gradient te
to be less steep in the decay stage, especially on the i
side of the torus.

Influence of the nonlinear evolution on the plasma co
finement is shown in Figs. 7 by the Poincare plots of t
magnetic field lines on the horizontally and vertically elo
gated poloidal sections att51000tA . The magnetic field
lines are stochastic in the steep pressure gradient region
to the growth of the mode. The overall pressure profile
flattened in the stochastic field region. Clear magnetic s
faces remain at the center region of the plasma, however.
plasma is still well confined inside the nested magnetic s
faces. It is also observed that remains of magnetic surfa
are still in their clear shapes on the edge region of
plasma. These results show that the plasma evolution
served here is not very destructive.

In order to identify a physical mechanism which dom
nates these pressure deformations, we investigate the
sure budget equation

d

dtE p d3x52E ]pVj

]xj
d3x2E ~g21!p

]Vj

]xj
d3x2~g21!

3E ]

]xj
S 2k

]

]xj

p

r Dd3x1~g21!

3E F d3x1~g21!E hJjJj d3x. ~12!

Here* d3x represents the volume integral over the half-pit
period of the LHD torus.

Shown in Figs. 8 is the profile of the integrand in ea
term of the right-hand side of Eq.~12! observed on the hori-
zontally elongated poloidal section att5520tA , namely,~a!
the pressure flow,~b! the compression,~c! the thermal con-
duction,~d! the viscous heating, and~e! the Ohmic heating.
In Figs. 8~a! through 8~e! plotted in bird’s-eye view, the sam
level of normalization is used to compare the amplitude
each term. The horizontal plane corresponds to the z

FIG. 7. Poincare plots of the magnetic field lines on~a! the horizontally and
~b! vertically elongated poloidal sections.
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level, and regions with negative value are expressed by d
gray. In the estimation of the net pressure balance by
volume integration, contributions from the positive a
negative parts are almost cancelled out to each other for
pressure flow, the compressibility and the thermal conduc
terms, respectively. Thus the greatest part of the net bala

FIG. 8. Birds’-eye views of the profile of the~a! pressure flow,~b! com-
pression,~c! thermal conduction,~d! viscous heating, and~e! Ohmic heating
terms in the pressure budget equation on the horizontally elongated pol
section att5520tA .
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in the pressure budget, or the net increase in the total p
sure energy, is attributed to the viscous heating. Compa
with the initial equilibrium, the increase in the total pressu
energy is about 5% att5500tA . Since the viscous heatin
term is a second-order term as for the velocity, the predo
nant contribution on the net balance can be considered
direct outcome of nonlinearity. Nonlinearity is revealed al
in the profile of the Ohmic heating, which has the nature o
positive definite. Compared with the viscous heating te
however, the contribution of the Ohmic heating term on t
net balance is observed to be significantly smaller, less t
one-tenth of the contribution of the viscous heating, throu
out the evolution of the process.

The local contribution of these terms can be examin
more closely by the profiles shown in Figs. 8. It is observ
that the pressure flow is the dominant term in the ove
magnitude, and shows almost the same behavior with
structure of the pressure fluctuation. Namely, it takes a p
tive value at the pressure ridges and a negative value a
pressure valleys. On the other hand, all other terms sh
out-phase behavior with the ridge/valley structure of t
pressure fluctuation. Thus the pressure flow term is reve
to be the agent that forms the deformed pressure struc
while other terms act to suppress the deformations. The
ond dominant term up to the saturation of the growth is
compression term, where the overall absolute magnitud
about two-thirds of that of the pressure flow term. This su
gests the importance of the nature of compressibility in
evolution of the ballooning mode. As is shown in Fig. 8, t
suppression effects of the thermal conduction and the visc
heating are also significant. The thermal conduction term
comes the second dominant after the saturation of
growth. It takes a large value at the sides of the press
ridges and valleys, where the pressure gradient is steep
to the nonlinear evolution. On the other hand, the visco
heating term reveals a peaked profile, in particular, at
deepest location in the pressure valleys. It acts to increase
pressure in valley regions and make the pressure grad
less steep there.

IV. CONCLUDING REMARKS

We have reported results of nonlinear simulation of
MHD plasma that is executed in the full three-dimension
geometry of the LHD system. In this paper, we focused
plasma behavior in the medium poloidal mode number ra
by imposing the sterallator symmetry boundary conditions
the toroidal direction. Growth and saturation of the resist
ballooning modes were observed. We found that the gro
rate of the kinetic energy in the linear growth period we
almost proportional toh1/3.

In the nonlinear stages of our simulations, we observ
the formation of a sharp ridge structure in the pressure p
file. The formation of the ridge structure was investigat
through the estimation of the right-hand side~RHS! of the
pressure budget equation~12!. It was shown that the loca
plasma deformations were driven by the pressure flow te
and suppressed mainly by the compression, viscous hea

al
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and thermal conduction terms. It is also noteworthy that
viscous heating term contributes much more to the net p
sure increase than the ohmic heating.

In the description of Figs. 6, we noted that pressure
formations on the inner side of the torus were becom
smaller. We have also seen in Figs. 7 that the instab
observed in this article is not so destructive. Since the kin
energy decays monotonically aftert5520tA , it may suggest
a transition of the plasma to a new equilibrium state. In or
to examine this tendency, we conducted a very long sim
tion with the medium resolution, the resistivity and viscos
being the same with the higher-resolution simulation sho
in the previous section. Contour plots of the pressure
Poincare plots of the magnetic field lines on the horizonta
and vertically elongated poloidal sections att54000tA are
shown in Figs. 9. We observe that the pressure profile
well-shaped and much broader than the initial profile. T
magnetic surfaces are recovered clearly in Figs. 9, altho
the stored total pressure energy is increased more than
compared with the initial equilibrium. As far as the gene
tendency is concerned, the result that the broad pressure
file is spontaneously realized is consistent with observa
in the actual LHD experiments, in which the plasma press
usually reveals broad profile.26 Although a computation with
finer resolutions may be required to confirm such a long ti
scale behavior, the equilibrium shown in Figs. 9 is a st
that is recovered from the midway disordered state. It can
viewed as a state that the plasma reaches as a result of
linear relaxation processes through redistribution of
plasma pressure. Since the pressure-driven instability

FIG. 9. An equilibrium reached by the plasma as a result of the press
driven relaxation. Contour plots of the pressure are shown on the~a! hori-
zontally elongated poloidal section, and~b! vertically elongated poloidal
section. Poincare plots of the magnetic field lines are shown on the~c!
horizontally elongated poloidal section, and~d! vertically elongated poloidal
section.
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pears in helical plasmas in its pure nature, they are con
ered to be a good target for studying the traits of pressu
driven relaxation. One direction in the extension of t
present approach of computation may be to extract a guid
principle that governs such a pressure-driven relaxation p
cess. Such a principle, if any, can also be applied to ot
configurations, like the tokamak.
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APPENDIX A: THE MHD EQUATIONS IN THE
HELICAL-TOROIDAL COORDINATE SYSTEM

The MHD equations~1!–~7! are described in the helical
toroidal coordinate system Eqs.~8!–~10! as follows:
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M5
]~u1,u2,u3!

]~x1 ,x2 ,x3!
. ~A9!

Here gi j , gi j , and g are the (i , j )-components of covarian
and contravariant components of the metric tensor
square of the Jacobian, respectively. The symbol

H h
i j J 5 H h

ji J 5
1

2
ghpS ]gip

]uj
1

]gjp

]ui
1

]gi j

]up D ~A10!

is the Christoffel symbol. Symbolsv i , bi , andj i representi th
contravariant components of the velocity, magnetic field, a
current vectors, respectively, while variable with subscri
represent contravariant components which can be obta
by using the metric tensorsgi j or gi j . The bold face symbo
M represents a 333 Jacobian tensor and its (i , j ) compo-
nents are represented by the symbolMi j . In Eq. ~A2!, we
have used the vector identity

¹2v5¹~¹•v !2¹3~¹3v ! ~A11!

for ease of a mathematical expression of the the Laplacia
a vectorv. In Eq. ~A4!, we have also used the fact that th
dissipative coefficients are isotropic constant.

APPENDIX B: SYMMETRY CONDITIONS IMPOSED ON
THE MHD EQUATIONS

As was described in Sec. II, the stellarator symmetry
imposed in the toroidal direction of this system. The boun
ary conditions associated with the stellarator symmetry
the contravariant components of the magnetic field vec
may be described as

b1~u1,u2,Du3!52b1~u1,2u2,2Du3!, ~B1!

b2~u1,u2,Du3!5b2~u1,2u2,2Du3!, ~B2!

b3~u1,u2,Du3!5b3~u1,2u2,2Du3!, ~B3!

on the poloidal sectionf50 ~vertically elongated poloida
section!, and

b1~u1,u2,p/M2Du3!5b1~2u1,u2,p/M1Du3!, ~B4!

b2~u1,u2,p/M2Du3!52b2~2u1,u2,p/M1Du3!,
~B5!

b3~u1,u2,p/M2Du3!5b3~2u1,u2,p/M1Du3!, ~B6!

on the sectionf5p/M ~horizontally elongated poloidal sec
tion!, whereDu3 is the grid interval along theu3 direction.
Boundary conditions on the density, pressure, and velo
fields are determined so that the MHD equations~1!–~7! are
invariant when the boundary condition is imposed on
magnetic field and described as

r~u1,u2,Du3!5r~u1,2u2,2Du3!, ~B7!

p~u1,u2,Du3!5p~u1,2u2,2Du3!, ~B8!
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v1~u1,u2,Du3!5v1~u1,2u2,2Du3!, ~B9!

v2~u1,u2,Du3!52v2~u1,2u2,2Du3!, ~B10!

v3~u1,u2,Du3!52v3~u1,2u2,2Du3!, ~B11!

on the poloidal sectionf50, and

r~u1,u2,p/M2Du3!5r~2u1,u2,p/M1Du3!, ~B12!

p~u1,u2,p/M2Du3!5p~2u1,u2,p/M1Du3!, ~B13!

v1~u1,u2,p/M2Du3!52v1~2u1,u2,p/M1Du3!,
~B14!

v2~u1,u2,p/M2Du3!5v2~2u1,u2,p/M1Du3!,
~B15!

v3~u1,u2,p/M2Du3!52v3~2u1,u2,p/M1Du3!,
~B16!

at f5p/M .
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