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Non-Local Simulation of the Formation of Neoclassical Ambipolar
Electric Field in Non-Axisymmetric Configurations
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Neoclassical transport simulation code (FORTEC-3D) applicable to non-axisymmetric configurations is de-
veloped. A new hybrid simulation model in which ion transport is solved by using the δ f Monte-Carlo method
including the finite-orbit-width effects, while electron transport is solved by a reduced ripple-averaged kinetic
equation, is adopted. This model makes it possible to simulate the dynamism of non-local transport phenomena
with a self-consistently developing radial electric field within an allowable computation time. Time evolution of
a radial electric field in LHD plasma is simulated in the full volume of the confinement region, and the finite-
orbit-width effect of neoclassical transport is found to make the negative ambipolar electric field larger than that
predicted by local transport theory.
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1. Introduction
Neoclassical transport theory has been successfully

established under the assumption of the local transport
model (small-orbit-width limit) and in a quasi-steady state.
However, these assumptions cannot be used to investigate
those issues which have been recently attracting much in-
terests, such as the finite-orbit-width (FOW) effects when
the typical orbit width in the radial direction is compara-
ble to the background gradient scale, the geodesic acoustic
mode (GAM) of the electric field and its Landau damp-
ing mechanism [1], and the evolution of the ambipolar ra-
dial electric field Er. Though the net radial transport level
observed in experiments is usually dominated by anoma-
lous transport, the self-induced electric field profile can
be explained by the neoclassical transport theory. We
have shown [2] by Monte-Carlo simulation using the δ f
method [3, 4] that in tokamak cases a steep Er profile can
be formed if there exists a steep density gradient. Such a
sheared Er profile is considered to reduce both the neoclas-
sical transport level by the orbit-squeezing effect [5] and
microscopic turbulence by the E × B shearing effect. In
non-axisymmetric cases, steep shear in the Er profile can
also be formed if the ambipolar condition has multiple so-
lutions [6]. Since the neoclassical fluxes in helical plasma
strongly depend on Er, the determination of a radial elec-
tric field in the existence of multiple ambipolar roots is a
key issue to evaluate the transport level in helical plasma.

The transition and bifurcation phenomena of Er in he-
lical systems have usually been studied by using an ana-
lytic model for neoclassical transport [7, 8], for example
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in [6, 9]. These previous studies have focused on rela-
tively slow-time scale phenomena, that is, the transport
time scale in which background profile of density and tem-
perature change. We are interested in shorter time-scale
phenomena comparable to transit time τtr ∼ qR/�th to ion
collision time τi where the background density and tem-
perature profiles can be considered unchanged. However,
the analytic model of neoclassical transport lacks the fol-
lowing physical mechanisms: 1) GAM oscillation and po-
larization drift motion associated with rapid time evolution
of radial electric field, 2) non-local drift motion of tran-
sit particle orbits in non-axisymmetric configuration and
its contribution to neoclassical transport, 3) direct orbit
loss at the plasma boundary, and 4) rigorous treatment of
the Coulomb collision. To simulate the dynamic transport
process and the formation of the ambipolar electric field
including non-local effects in non-axisymmetric configu-
rations, we have been developing the δ f code FORTEC-
3D to be applicable to general 3-dimensional configura-
tions. The formulation is explained in Sec. 2. In FORTEC-
3D, neoclassical ion transport is solved by the δ f method
while electron one is obtained from a ripple-averaged ki-
netic equation solver GSRAKE [10, 11], and the time evo-
lution of Er is solved self-consistently in the simulation.
The adoption of this hybrid simulation model enables us
to simulate neoclassical transport including the FOW ef-
fect of ions within an allowable computation time. For a
demonstration of the new simulation model, in Sec. 3 we
show the global simulation results of the time evolution of
the radial electric field in LHD plasmas [12]. The forma-
tion of the ambipolar Er profile in the presence of multiple
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roots for the ambipolar condition is successfully simulated,
and it is found that the FOW effect changes the ambipolar
electric field profile from that obtained by conventional lo-
cal transport analysis.

2. Simulation Model
In the δ f method, time development of the per-

turbation of plasma distribution function from the local
Maxwellian δ f = f − fM is solved according to the drift-
kinetic equation

Dδ f
Dt

≡ ∂δ f
∂t
+
(
v‖ + vd

) · ∇δ f −Ctp(δ f )

= −vd · ∇ fM + P fM, (1)

where Ctp and P are test-particle and field-particle parts of
a linearized collision operator, v‖ = v · B/B, and vd is the
drift velocity of guiding center motion across the magnetic
field line. The magnetic field is given in the Boozer coordi-
nate system (ψ, θ, ζ) [13] as B = ∇ψ×∇θ+ ί́∇ζ×∇ψ, where
ψ is the toroidal flux, θ and ζ are poloidal and toroidal an-
gles, and ί́ is the rotational transform divided by 2π, re-
spectively. In our simulation, the magnetic field configura-
tion is constructed from the VMEC code [14] which solves
the MHD equilibrium state for a given pressure and plasma
current profiles. The guiding center equations of motion
in the Boozer coordinates are also described in [13]. The
guiding center motion of simulation markers, whose dis-
tribution function is here expressed as g, is traced in 5-
dimensional phase space (ψ, θ, ζ, �‖, �⊥). The test-particle
collision operator Ctp is implemented numerically by ran-
dom kicks of marker velocity in the (�‖, �⊥) space. P fM is
then defined so that the three constants in the exact Fokker-
Planck collision operator, i.e., total particle number, mo-
ments, and energy, should really be conserved. The details
of the collision operator used here is described in [3]. To
solve eq. (1), two weights, w and p, are introduced which
satisfy the relations wg = δ f and pg = fM, respectively.
Since the time evolution of marker distribution can be de-
scribed by Dg/Dt = 0, where D/Dt means the total deriva-
tive along marker motion including stochastic motion by
the effect of Ctp, these weights evolve according to

dw
dt

=
p
fM

[−vd · ∇ + P] fM, (2a)

dp
dt

=
p
fM

vd · ∇ fM. (2b)

Note that the FOW effect is included from the vd ·∇δ f term
in eq. (1), which is omitted in standard neoclassical theory.

Neoclassical particle and energy fluxes are evaluated
by

Γ =

〈∫
d3�ψ̇δ f

〉
, (3a)

q =

〈∫
d3�

1
2

m�2ψ̇δ f

〉
, (3b)

where 〈· · · 〉 means the flux-surface average. The time evo-
lution of radial electric field E = −dΦ/dψ∇ψ = Eψ∇ψ can

be described as follows

ε0

〈|∇ψ|2〉 +
〈

c2

�2A
|∇ψ|2

〉 ∂Eψ

∂t
= −e [ziΓi − Γe] ,

(4)

where subscripts i and e describe particle species, and �A
is the Alfvén velocity. The term containing �A appears
because of the classical polarization drift proportional to
∂E/∂t. The neoclassical polarization drift, which can be
explained by considering the drift of bounce-averaged po-
sition

∮
dtψ̇/τb when Eψ is time-dependent, is included in

the evaluation of eq. (3) because we trace the marker orbit
directly in the time-dependent field without any averaging
operation in solving the equations of motion. Similarly,
the orbit squeezing effect is also included in eq. (3) since
the marker orbit is traced exactly including the radial ex-
cursion in a sheared Eψ field.

In our previous study of tokamak plasmas, electron
particle flux Γe has been neglected because of its small-
ness. In non-axisymmetric cases, however, Γe becomes
comparable to Γi and is needed in order to simulate the
time evolution of the ambipolar electric field in which
Γe(ψ, Eψ) = ziΓi(ψ, Eψ) is satisfied. The hybrid simula-
tion model for evaluating Γe and Γi introduced in Sec. 1
is adopted since the FOW effect is expected to be im-
portant mainly on ions which have a wider radial orbit
width than electrons. The details of the GSRAKE code
used to evaluate Γe are found in the references [10, 11].
In brief, GSRAKE solves ripple-averaged (or so-called
bounce-averaged) kinetic equation in helical systems. One
advantage of GSRAKE over other analytic models is that
it treats both ripple-trapped particles and non-localized
(passing) particles on an equal footing in the formula-
tion. It can be applicable to the whole long-mean-free-path
regime (νeff/τb 	 1) and a wide range of Eψ. Therefore, it
is suitable to make the table of Γe(ψ, Eψ) in the entire simu-
lation domain (ψ, Eψ) where the collisionality and Eψ may
change to a large extent. The Γe-table is then referred to in
each step in FORTEC-3D to evaluate eq. (4). The reliabil-
ity of the result obtained by GSRAKE in the LHD config-
uration has been benchmarked in the above references.

Because a magnetic coordinate system is used, we
have no information beyond the last closed flux surface
(LCFS). The magnetic field spectrum is extrapolated to
the outer region, and markers that spend some time steps
out of the LCFS are killed and recycled inside the LCFS.
This procedure corresponds to a orbit-loss mechanism at
the boundary. Recycled marker weights should be deter-
mined so as not to bring any physical value such as parti-
cle density, momentum, and energy into the rebirth point.
For the weight w, the new weight can most easily set as
0 for recycled markers. However, this causes a numerical
noise because these recycled markers enhance the spread
of weight field variance. In fact, the weight spread is es-
sentially inevitable in the δ f Monte-Carlo method [4] be-
cause two markers which have moved on different paths
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in the phase space come up to the same point at the same
time with bringing different weights. We have expanded
the weight-averaging technique described in Ref. [4] for
the determination of the new markers’ weights as follows.
(Though here we only show the procedure for weight w, it
can also be applied in determining p.)

At first, consider an averaged weight field Wi j(v) in a
small bin (i, j) in the velocity space (�‖, �⊥). We assume
that Wi j is given in the following form

Wi j(v) = W (0)
i j +W (1)

i j �‖ +W (2)
i j �

2. (5)

Next, the weight for existing markers wk and newly recy-
cled ones wl in the (i, j) bin are renewed toward Wi j(v) with
a damping rate γ (0 < γ < 1),

w1
k = γWi j(vk) + (1 − γ)w0

k , (6a)

w1
l = Wi j(vl), (6b)

where overscripts 0 and 1 denote the old and new value,
respectively. To prevent the sums of constants-of-motion
in a bin from changing on recycling, the following relations
must be satisfied.

∑
k

w0
k =

∑
k

w1
k +
∑

l

w1
l , (7a)

∑
k

w0
k� ‖k =

∑
k

w1
k� ‖k +

∑
l

w1
l � ‖l, (7b)

∑
k

w0
kv2

k =
∑

k

w1
k�

2
k +
∑

l

w1
l �

2
l . (7c)

Combining eqs. (5)-(7), one obtains the following relation,
which is inverted to determine W (0,1,2)

i j ,

γ



∑
k

w0
k∑

k

w0
k�‖k∑

k

w0
k�

2
k



=



γki j + li j

∑
k,l

γ�‖k + �‖l
∑
k,l

γ�2k + �
2
l∑

k,l

γ�‖2k + �‖
2
l

∑
k,l

γ�‖k�
2
k + �‖l�

2
l∑

k,l

γ�4k + �
4
l


·



W (0)
i j

W (1)
i j

W (2)
i j


,

(8)

where the matrix is symmetric, and ki j, li j are the numbers
of existing and recycling markers in a bin, respectively. We
have verified that the recycling procedure performed effec-
tively without increasing the weight variance at the rebirth
region for 6,000 computation time steps, which correspond
to t = 3.0τi. By introducing the recycling technique, it is
possible to trace the time evolution of the radial electric
field up to a few collision times which is required to simu-
late the transport phenomena until the distribution function
δ f reaches a quasi-steady state.

3. Transport Simulation in LHD
Plasma
We have conducted transport simulation using

FORTEC-3D in several configurations. The magnetic field
configuration is constructed modeled on a LHD plasma in
which the magnetic axis and magnetic field strength on it
are Rax = 3.7 m and B0 = 1.65 T, respectively. The density
and temperature profiles for ions and electrons are given
by the following expression{

ni,e(ρ)
Ti,e(ρ)

}
=

{
n0i,e

T0i,e

} [
α1 + (1 − α1) exp(−α2ρ

α3 )
]
,

(9)

where ρ =
√
ψ/ψedge is the normalized minor ra-

dius, and (α1, α2, α3) = (−0.01, 3.0, 3.5) for density and
(0.05, 4.5,2.0) for temperature. In the first case, we set
T0i = T0e = 1.0 keV and n0i = n0e = 2.0 × 1018 m−3.
The plasma collisionality is considered to be in the 1/ν
regime [16] in almost the entire plasma region. We have
used 60 × 20 × 10 meshes in the ψ, θ, and ζ-directions re-
spectively, and 20×10 meshes in the velocity space (�‖, �⊥).
The simulation domain is restricted to a one-helical pitch
(0 < ζ < π/5) and a cyclic boundary condition is set in
the ζ-direction. Sixty-four million markers have been used
in the simulation. Such a large number of markers are re-
quired to suppress the statistical noise in the long-duration
simulation up to a few collision times. Though the simu-
lation becomes heavy in the 3-dimensional cases, it takes
only 10 hours to run up to 1.0τi on the supercomputer sys-
tem in NIFS owing to the high parallelization and vector-
ization efficiency of the code written in HPF (High Perfor-
mance Fortran) [15].

Figure 1 shows the radial electric field profile formed

Fig. 1 Ambipolar electric field profile in the case B0 = 1.65 T,
Rax = 3.7 m, and Te = Ti = 1.0 keV on the magnetic
axis. The horizontal axis is the normalized minor radius
ρ =
√
ψ/ψedge. Diamond marks are the simulation result

of FORTEC-3D, and circles and squares are estimations
from GSRAKE. The dashed line is the initial Er profile
given in FORTEC-3D.
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at a quasi-steady state at t = 0.5τi, where τi is evaluated
at ρ = 0.5. In this figure, the estimation of the ambipo-
lar Er profile is predicted by solving Γi as well as Γe from
GSRAKE to seek the root that satisfies Γe(Er) = Γi(Er) on
each radial position. We show here two estimations from
GSRAKE by turning on/off the contribution of the ∂B/∂ρ
term in the ripple-averaged kinetic equation. This term is
related to the poloidal component of ∇B drift motion. Γi

obtained from GSRAKE shows a somewhat oscillatory be-
havior on the change of Er if the ∂B/∂ρ term is included,
while Γe is not significantly affected by this term. There-
fore, we show in Fig. 1 some candidates of the solution
for the ambipolar Er obtained from GSRAKE calculated
with the ∂B/∂ρ term. Neglecting this term makes the esti-
mated ambipolar-|Er | value slightly smaller as can be seen
in Fig. 1. In both cases, it is predicted that there is only
a negative root (ion root) in the entire region, and the re-
sult of FORTEC-3D is also settled in a negative Er pro-
file. In the outer-half of the plasma ρ > 0.5, the ambipolar
Er value from FORTEC-3D and from GSRAKE differs by
as much as 50%. This difference is apparently due to the
fact that the ripple-averaged kinetic equation neglects these
physics which are contained in the δ f formulation, such as
the FOW effect, rigorous treatments of collision term, and
exact drift motion without averaging over a bounce time.
Among them, we expect that the major factor leading to
the difference in Er is the FOW effect, especially for a
low-collisionality plasma. Further inspection is described
later. On the contrary, as shown in Fig. 2, the ambipo-
lar flux obtained by FORTEC-3D shows close agreement
with the predictions by GSRAKE in the case both with-
and without- the ∂B/∂ρ term to make the Γi,e-tables. Since
Γi generally has a steep peak on the negative side close to
Er = 0 as illustrated in Fig. 3, it is expected that a small
difference of Γi between FORTEC-3D and GSRAKE due
to the non-local effect would change the ambipolar condi-
tion if the root is close to the peak position. In Fig. 3, one
can also see that ambipolar flux changes only slightly on
the change of the ambipolar Er because Γe is insensitive to
the change of Er compared with Γi.

The non-local effects on ion transport considered by
FORTEC-3D can be classified into two types. The first
type is the finiteness of the radial drift widths of helically
and toroidally trapped orbits. In tokamaks, trapped parti-
cles sometimes have an orbit width as large as several tens
% of the minor radius, and we have shown that neoclassical
heat flux and the ambipolar condition in tokamaks are af-
fected by the FOW effect of the large potato orbits appear-
ing in the core region of tokamaks [17, 18]. In the helical
LHD configuration, however, the orbit width of helically
trapped particles is small and its FOW effect is expected
to be weak. A stronger effect on neoclassical transport in
LHD will arise from the FOW effect of transit orbits, which
show a transition between helically and toroidally trapped
(or passing) orbits. If the collisionality is small, some ion
particles can drift a long distance in the radial direction by

Fig. 2 Comparison of the ambipolar particle flux between
GSRAKE (circles and squares) and FORTEC-3D simula-
tions (solid and dashed lines). The circles and solid lines
are results by using Γi,e-tables of GSRAKE neglecting
the ∂B/∂ρ term, while this term is included in the results
plotted by squares and dashed lines.

Fig. 3 Illustration of particle fluxes Γi and Γe seen as functions
of Er. By including the ∂B/∂r term (poloidal component
of ∇B drift) and non-local effects, ambipolar Er changes
1→ 2→ 3 according to the change in Γi.

transitions. The second type is the direct orbit loss at the
plasma boundary. In FORTEC-3D, this effect is included
by killing the simulation markers which escape from the
LCFS. Since we neglect the precise loss mechanisms of
bulk ions by collisions between neutrals or impurities, and
the real orbit in a stochastic magnetic field at the periph-
eral region are not included, our simulation is regarded as a
simple model of orbit loss by a virtual limiter placed close
to the LCFS.

In order to investigate these non-local effects on the
formation of an ambipolar electric field, we carried out
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two simulations: (a) by increasing the strength of mag-
netic field 4-times (though it is not achievable in real LHD
experiment) that of the case shown in Fig. 1, and (b) by
changing the magnetic axis position to Rax = 3.6m. In
both simulations, n and T profiles are the same as in the
previous case. Before explaining the simulation result, we
mention here the collisionality in these simulations. The
collisional regime of helical plasma is usually classified
by the normalized factor ν∗h ≡ qR0νi/�thε

3/2
h for a single-

helicity case, where νi = τ−1
i and εh = Bl,m/B0 describes

the relative magnitude of the Fourier component of the he-
lical field. Though there is a proper definition for εh for
a multi-helicity case [16], we use an approximation, in
which εh � B2,10/B0 as B2,10 is the major helical com-
ponent for a LHD configuration. The other two parame-
ters used here to distinguish the plasma collisionality are
νeff ≡ νi/εh and ωE = |Er|/rB0, which represent the effec-
tive collisionality for ripple-trapped particles and the E×B
rotational frequency, respectively. In the simulation shown
here, for example at ρ = 0.7 in the Rax = 3.7 case, these
parameters are εh = 0.12, ν∗h = 0.36, νeff = 3.9 × 103, and
ωE = 4.0 × 103. These parameters are almost the same
in the Rax = 3.6 case shown below. Since ν∗h 	 1, the
plasma is well within the 1/ν regime. Moreover, ωE � νeff

means that the collisional regime is around the transition
layer from the 1/ν regime to ν1/2 regime, where the colli-
sionless transition between trapped and untrapped orbits as
well as the collisional diffusion of ripple-trapped particles
contributes to the radial transport. In this collisionality, the
radial transport level strongly depends on Er (diffusion co-
efficient D ∼ 1/ν in the 1/ν regime and ∼ ν1/2/E3/2

r in
the ν1/2 regime [16]), and the finiteness of the transition
particle orbit is expected to have an effect on the particle
transport.

Now let us examine the simulation results in Figs. 4
and 5. In the strong B-field case, the discrepancy in the am-
bipolar Er between GSRAKE and FORTEC-3D is small in
the edge region ρ > 0.8, while a clear difference remains
in the core region 0.2 < ρ < 0.8. If the magnetic axis is
shifted to Rax = 3.6 m, one can see that the discrepancy
in the ambipolar Er becomes smaller than that in the case
Rax = 3.7 m. It is known that in LHD plasma, the neoclas-
sical transport level is suppressed by shifting the magnetic
axis inward [19]. In view of single particle orbit, this im-
provement of plasma confinement results from the fact that
the radial excursion of transit orbit in an inwardly shifted
configuration is shrunk as the Fourier components of the
magnetic field spectrum change toward a “σ-optimized”
field [20]. Therefore, the non-local effect brought by tran-
sit particles, which is correctly evaluated in the δ f simula-
tion, is expected to have less effect on the total neoclassical
transport in the case of Rax = 3.6 m, and then the ambipo-
lar Er obtained from FORTEC-3D is close to the result ob-
tained by GSRAKE, which is a small-orbit-width transport
model. On the other hand, improvement in the confinement
of transit orbit is not expected by changing only the abso-

Fig. 4 Comparison of the ambipolar electric field in different
strength of the magnetic field. Open circles and squares
are the predictions from GSRAKE, and diamond and tri-
angle marks are the results of FORTEC-3D at t = 0.5τi .

Fig. 5 Ambipolar electric field profile in an inward-shift config-
uration (Rax = 3.6 m).

lute strength of the magnetic field. Note here that, since the
plasma pressure is very low (β ∼ 0.01%) in the simulations
we show here, the relative magnitude of each Fourier com-
ponent of magnetic field is almost fixed on the change of
absolute strength of it. From the result shown in Fig. 4, it
is considered that the orbit-loss transport at the edge region
is suppressed because the strong magnetic field shrinks the
orbit width of toroidally trapped particles, and the differ-
ence of ambipolar Er between GSRAKE and FORTEC-3D
becomes smaller in the strong B-field case. The discrep-
ancy of the ambipolar Er between 0.2 < ρ < 0.8 seems
larger for the strong magnetic field case shown in Fig. 4.
Note here that the E × B drift, which reduces the radial
particle drift and transport in the collisionless regime, is
proportional to Er/B. From the result of FORTEC-3D sim-
ulation shown in Fig. 4, the fraction in the weak and strong
B-field cases at ρ = 0.5 are Er/B = 1.7 and 0.71, respec-
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tively. This suggests that the ion flux is suppressed enough
to satisfy the ambipolar condition by a weaker E×B veloc-
ity in the stronger magnetic field case, that is, in the smaller
orbit width case. Therefore, the apparent large discrepancy
of Er does not contradict our assertion that the FOW effect
and its suppression by the E × B drift are the important
factors in determining the ambipolar electric field. In con-
clusion, it is found that the non-local effects of loss cone
particles and transit particles are important for a quantita-
tively reliable evaluation of the ambipolar electric field.

Next, we carried out a simulation in which the elec-
tron temperature is set 1.5 times larger than in the first
case. The Γe(ρ, Er)-table constructed from GSRAKE is
shown in Fig. 6. It has a peak around Er � 0, which is
a typical tendency of neoclassical flux in the 1/ν regime.
The ambipolar condition predicted by GSRAKE is plot-
ted in Fig. 7. Note here that the ∂B/∂ρ term is dropped
in this case in order to avoid numerical ambiguity in de-
termining the ambipolar roots by GSRAKE, as shown in
Fig. 1. It is predicted that triple roots exist in the range
0.2 < ρ < 0.5. The middle root is an unstable root, thus
the Er profile will be settled in either a positive or a neg-
ative root. The simulation result of the δ f simulation is
also shown in Fig. 7. One can see close agreement of the
resulting Er profile between GSRAKE and FORTEC-3D
regarding the radial position where positive and negative
roots appear. It takes 2.5τi to reach the quasi-steady state
plotted in this figure, which is much longer than the previ-
ous cases in which only an ion root is expected. The large
negative root at the edge is formed by the orbit loss of ions.
It has evolved deeper than that seen in Fig. 1 because the
simulation time is longer. It is worth noting that the edge Er

value in the simulation reached the steady state at t � 2τi

and the strong E × B rotation at the edge region prevented
simulation markers from leaking out of the plasma.

Fig. 6 Contour-plot of Γe-table calculated by GSRAKE in the
case Te = 1.5,Ti = 1.0 keV on the magnetic axis. It has a
peak at ρ � 0.35, Er � −1.0 keV.

The ion root Er seen in ρ > 0.6 has a discrepancy
between the results obtained by GSRAKE and FORTEC-
3D as it is seen in Fig. 1. This can be attributed to the
non-local effects and to the smallness of the ambipolar |Er |
of GSRAKE estimation without the ∂B/∂ρ term. On the
other hand, the positive root (electron root) shows close
agreement between these two numerical codes. Gener-
ally, neoclassical flux is suppressed in an electron root
compared with that in an ion root. This tendency can
also be seen in Fig. 9 mentioned later, which shows the
change in Γi before and after the transition from the ion
to the electron root. The suppression of Γi in the posi-
tive electric field means that the typical radial drift width
is also suppressed in the presence of positive-Er. There-
fore, the non-local effect on neoclassical flux in the δ f
code is expected to be smaller in the electron root, and ac-
cordingly the resultant ambipolar field profiles obtained by
GSRAKE and by FORTEC-3D become closer. In the mid-
dle layer 0.4 < ρ < 0.6, the electric field profile obtained
by FORTEC-3D shows an oscillatory behavior. Bifurca-
tion of the ambipolar condition occurs in this layer, and
we think this oscillation is due to a numerical instability of
FORTEC-3D at the discontinuous layer of the radial elec-
tric field in the time evolution of Er according to eq. (3).
A more suitable numerical method for the evolution of the
Er field, which may have discontinuous points in the ra-
dial direction as shown in Fig. 7, should be adopted in the
future.

The time development of Er and Γi on the flux sur-
faces ρ = 0.30, 0.35, and 0.40 are plotted in Figs. 8 and
9, respectively. Note that the time evolution of the radial
electric field as well as that of weight w are stopped artifi-

Fig. 7 Ambipolar electric field profile simulated by using the
Γe-table in Fig. 6 when it reaches a quasi-steady state at
t = 2.5τi. Between the region 0.2 < ρ < 0.5, multiple
roots for ambipolar condition Γe = Γi is expected from
GSRAKE, and the result of FORTEC-3D shows a bifur-
cation from negative to positive root in that region. A
strong negative Er at the edge region is formed as a result
of the ion orbit-loss occurred there.
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Fig. 8 Time evolution of the radial electric field on the flux sur-
faces ρ = 0.30, 0.35, and 0.40 in the same case as in
Fig. 7. The horizontal axis is the simulation time normal-
ized by τi(ρ = 0.5).

cially in the initial phase until t = 0.2τi in order to avoid an
excessively large spike at the onset of the oscillation of Er

and Γi. On these surfaces, the radial electric field oscillates
rapidly around the negative root in the beginning phase. By
taking the power spectrum, the oscillation is identified as
the geodesic acoustic mode as shown in Fig. 10, of which
frequency is estimated as ωGAM =

√
7�th/2R0 [2] based on

neoclassical transport analysis in a simple circular-cross
section tokamak case, where �th is the ion thermal veloc-
ity on each flux surface. The GAM oscillation damps and
the Er on each surface settles in the negative root. Then,
a transition of Er happens on ρ = 0.30 at t = 0.8τi and
the transition propagates to the outer surfaces as seen in
Fig. 8. Since our δ f code treats the evolution of plasma as
an initial value problem containing no source terms, the fi-
nal steady Er profile depends on the initial settings of the
plasma state. Therefore, there is also the possibility of a
steady ion root in some initial condition or by introducing
source/sink terms to the simulation. Unlike in a local trans-
port analysis such as GSRAKE which solves the ambipolar
condition independently on each single flux surface, evo-
lution of the ambipolar Er profile in a global simulation is
determined by the total balance of particle and momentum
transport in the whole plasma region. Though the details
of the triggering mechanism are still unclear because we
have examined only one case, the simulation result shows

Fig. 9 Time evolution of the radial particle fluxes on the flux
surfaces ρ = 0.30, 0.35, and 0.40 in the same case as in
Fig. 7. Solid line is the ion particle flux Γi and dashed
line is Γe (almost hidden by the solid line).

Fig. 10 The power spectrum of Er oscillation taken in the time
span 0.2 < t/τi < 0.5 on ρ = 0.35 surface shown in
Fig. 8. The theoretical value of GAM frequency is given
by ωGAM =

√
7�th/2R0.

that the transition and formation of the ambipolar electric
field contain a non-local nature.
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4. Summary
We have developed a neoclassical transport simula-

tion code FORTEC-3D to investigate non-local and time-
dependent phenomena in neoclassical transport in non-
axisymmetric systems such as LHD. It has been shown in
this paper that the our hybrid simulation model designed to
solve ion and electron fluxes worked successfully and that
non-local neoclassical transport affects the magnitude of
the ambipolar electric field. The exsistence of a non-local
transition mechanism has also been shown. Therefore, we
consider the use of the global transport simulation model
as introduced here to be important in the investigation of
transport phenomena in the short time scale such as the
formation and transition of the ambipolar electric field in
non-axisymmetric systems. We will continue to develop
the δ f code in order to stabilize the time evolution of Er

at the point where the Er profile changes from a positive
to a negative root, and plan to investigate the above issues
based on detailed simulations using FORTEC-3D.

As shown in Fig. 7, a strong negative Er is formed at
the edge region. This is due to the orbit loss of ions at the
LCFS. The killing and recycling processes for the markers
adopted here are artificial ones and do not reflect the phys-
ical processes in the plasma’s edge region such as charge
exchange and re-entering of ions. Introducing such phys-
ical mechanisms will make it possible to simulate the for-
mation of the edge transport barrier. To introduce a physi-
cal source or a sink term, the procedure of marker recycling
explained in Sec. 2 can be extended by adding a source
term in the lhs of eq. (7). The improvement of the simula-
tion model by adding the source and sink terms will make
it possible to apply the simulation to various studies con-
cerning neoclassical transport phenomena and to compare
the results with experimental data.
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