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The motion of ultrarelativistic ions in an oblique magnetosonic shock wave is studied analytically
and numerically. The zeroth-order theory predicts that an oblique shock wave can accelerate ions in
the direction nearly parallel to the magnetic field if the shock speed is vsh�c cos �, where � is the
angle between the wave normal and the magnetic field, while the perturbation is a one-dimensional
oscillation nearly perpendicular to the zeroth-order motion. The perturbation frequency � is of the
order of �i0�−1/2, where � is the Lorentz factor of the zeroth-order velocity. These theoretical
predictions are examined with test particle simulations, in which the test particle orbits are
calculated with use of the electromagnetic fields of a shock wave obtained from an electromagnetic
particle simulation. The zeroth-order and perturbed motions in the simulations are explained by the
theory. © 2009 American Institute of Physics. �doi:10.1063/1.3270110�

I. INTRODUCTION

Several nonstochastic particle acceleration mechanisms
occurring in magnetosonic shock waves have been studied
with theory and particle simulations;1–20 for instance, the
sharp rise of the electric potential and the magnetic field in
the shock transition region energize some ions by reflecting
them,1–9 and acceleration to relativistic energies has been
demonstrated with particle simulations.4 In a multi-ion-
species plasma in which protons are the major ion compo-
nent as in space plasmas, all the heavy ions gain energy from
the transverse electric field when they pass through the shock
transition region and have nearly the same speed;10 these
results have been applied to solar energetic particles to ex-
plain the observations that the elemental compositions of so-
lar energetic heavy ions are similar to that of the solar
corona.21 Some electrons can be trapped by a shock wave
and are accelerated to ultrarelativistic energies with the
Lorentz factors ��100.11 Relativistic ions can stay near the
shock transition region for periods much longer than their
relativistic gyroperiods, during which their energies go up
stepwise.17 Particle simulations have thus demonstrated par-
ticle acceleration to energies much higher than those of solar
energetic particles �the highest energies of solar energetic
electrons and ions are, respectively, several tens of mega-
electronvolts ���100� and 1–10 GeV ��=1�10�.

In a mechanism recently found,18,20 a shock wave accel-
erates particles along the magnetic field with its electric field
parallel to the magnetic field, E� = �E ·B� /B. Since the inte-
gral of the parallel electric field along the magnetic field,
F=−�E�ds, rises in the shock transition region22 as the elec-
tric potential does, positively charged particles, such as ions
and positrons, can suffer this acceleration �positrons could be
present around pulsars23,24�. The accelerated particles stay in
the shock transition region for long periods of time, move

nearly parallel to the magnetic field B, and absorb energy
from E�.

If the Lorentz factor � of a particle is much greater than
unity, then even a slight increase in the particle speed v
would result in a huge increase in �. By use of this fact, an
acceleration theory has been developed,18 in which the
zeroth-order velocity v0 is parallel to the external magnetic
field B0. The zeroth-order theory is applicable to both the
ions and positrons, while for the perturbations around the
zeroth-order motion, two different theoretical schemes have
been presented; one for positrons and the other for ions.20

The theory for the positrons predicts that their perturbed
motion is elliptic in the plane nearly perpendicular to v0 and
the frequency of the perturbed motion is of the order of the
relativistic gyrofrequency.20 These predictions have been
verified with relativistic particle simulations. That is, the
simulations have demonstrated that an oblique magnetosonic
shock wave in an electron-positron-ion plasma accelerates
some positrons in the direction parallel to the magnetic
field to energies ��2000 �Fig. 1 in Ref. 19�; the acceleration
processes continued till the end of the simulation run
��pet=5000�, suggesting that the particle energies would fur-
ther rise if we carry out longer time simulations. Further-
more, the observed perturbation motions and frequencies
were consistent with the theoretical predictions.

The theory for the ions,20 however, has not been tested
yet with computer experiments. In this paper, we investigate
the motions of ultrarelativistic ions with numerical simula-
tions and compare them with the theory. In Sec. II, we briefly
describe the theory of the motion of an ion accelerated par-
allel to the magnetic field. The ion perturbation motion is
one-dimensional with frequency of the order of �i0�−1/2,
where �i0 is the nonrelativistic ion gyrofrequency, and its
velocity v1 is nearly perpendicular to the zeroth-order veloc-
ity v0. In Sec. III, we perform test particle simulations. First,
we carry out a simulation of a shock wave using a one-a�Electronic mail: usami.shunsuke@nifs.ac.jp.
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dimensional �one space coordinate and three velocities�,
fully kinetic, relativistic, electromagnetic particle code and
obtain the electric and magnetic fields of the shock wave.
Assuming that the wave propagation is stationary, we then
follow the trajectories of energetic test ions in these fields.
This method enables us to follow ion orbits for long periods
of time, much longer than the ion gyroperiod, and to pre-
cisely test the theory described in Sec. II, removing the effect
of the change in the wave profile. The simulations demon-
strate that some ions are accelerated along the magnetic field
in a shock wave. The case with unstable perturbations is also
shown. In both the stable and unstable cases, the observed
zeroth-order and perturbation motions are consistent with the
theory. Section IV gives a summary of our work.

II. OVERVIEW OF THE THEORY

We outline the theory of acceleration of ultrarelativistic
ions along the magnetic field.20 By using the relativistic
equation of motion

mi
d��v�

dt
= qi�E +

v
c

� B	 , �1�

we analyze ion motions in a stationary, one-dimensional
�� /�y=� /�z=0� plasma wave propagating in the x direc-
tion with a speed vsh in an external magnetic field
B0= �Bx0 ,0 ,Bz0�=B0�cos � ,0 , sin ��. In Secs. II A and II B,
no specific wave mode is assumed. In Sec. II C, we consider
magnetosonic shock waves and estimate the time rate of
change of � of an ion accelerated with this mechanism.

A. Zeroth-order motion

If the Lorentz factor � is much greater than unity, a
slight change in the particle speed leads to a great change in
�. Therefore, assuming that


v

d�

dt
� ��dv

dt
� , �2�

we ignore the term �dv /dt in Eq. �1�, which yields the equa-
tion for the zeroth-order velocity v0

mi
d�0

dt
v0 = qi�E +

v0

c
� B	 , �3�

where �0 is the zeroth-order Lorentz factor.
If the x component of v0 is given by

vx0 = vsh, �4�

then this particle can move with the wave for a long time. By
virtue of Eq. �4� and the relations Ey = �vsh /c��Bz−Bz0� and
Ez=−�vsh /c�By, which hold for stationary waves, Eq. �3�
becomes

mivsh
d�0

dt
= qi�Ex +

vy0

c
Bz −

vz0

c
By	 , �5�

mivy0
d�0

dt
= qi�vz0

c
Bx0 −

vsh

c
Bz0	 , �6�

mivz0
d�0

dt
= − qi

vy0

c
Bx0. �7�

For ��1, we find that

vy0 = −
ExBz0vsh�sh

−2 − Bx0Byc�sh
−4

Bz0Bz�vsh/c��sh
−2 + Bz0

2 �vsh/c�3 , �8�

vz0 =
Bx0

Bz0

c2�sh
−2

vsh
, �9�

d�0

dt
= � qi

mic
	ExBz0�vsh/c� − Bx0By�sh

−2

Bz�sh
−2 + Bz0�vsh/c�2 , �10�

where �sh= �1− �vsh /c�2�−1/2.
If the wave speed is close to c cos �,

vsh � c cos � , �11�

then the particles with v� �c, where v� is the speed along the
magnetic field, would be able to interact with the wave for
long periods of time. For the wave speed �11�, �sh is approxi-
mated as �sh

−1�sin �. Then, v0 and d�0 /dt may be written as

vy0 = − �Ex − �vsh/c�By tan �

Bx0 cot � + Bz
	c , �12�

vz0

vsh
=

Bz0

Bx0
, �13�

d�0

dt
=

qiBx0

mivsh
�Ex − �vsh/c�By tan �

Bz tan � + Bx0
	

= �i0
c cos �

vsh

�E · B�
�B · B0�

, �14�

where �i0=qiB0 / �mic�. In the second equation of Eq. �14�,
we have used the relations Ez=−�vsh /c�By and E ·B=E ·B0,
which are obtained from Faraday’s law for stationary, one-
dimensional waves.

For the wave speed �11�, 
vy0
 is much smaller than vx0

and vz0; Eq. �13� then indicates that v0 is nearly parallel to
B0.

B. First-order motion

We now describe the perturbations around the zeroth-
order solution. We expand the particle position and velocity
as

x = x�0� + v0t + �x1�t� + �2x2�t� + ¯ , �15�

v = v0 + ��v1�t� + ����2v2�t� + ¯ , �16�

where x�0� is the initial position, and � and �� are smallness
parameters. �In writing the expansion in the form of �15� and
�16�, we view the quantities x1 and v1 are of the same order
of magnitudes.� The relation d� /dt= ��3 / �2c2��dv2 /dt indi-
cates that a small change in v creates a large change in �.
Then, introducing a parameter 	 of the order of �,
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	 � � � 1, �17�

we assume the following ordering:

1

�i0

d

dt

v0

c
�

1

	3 ,
1

�i0

dv1

dt
�

v1

	1/2 , v0 · v1 �
v0v1

	2 . �18�

�For the case of positrons, dv1 /dt was taken to be �v1 /	.20�
From Eqs. �15� and �16� and the second ordering in Eq. �18�,
we see that

�� � 	−1/2� . �19�

We introduce the quantity


 = x − vsht . �20�

Because the wave is stationary, its fields depend only on 
.
The particle is supposed to move around its zeroth-order tra-
jectory 
0 �=x�0��. We expand the field quantities near this
point as

Ex�
� = Ex�
0� +
dEx

d
0
�
 − 
0� + ¯ , �21�

where dEx /d
0 represents the value of dEx�
� /d
 at 
=
0.
Then, in the order of �, the equation of motion becomes

vsh�0
3

c2 �v0 ·
dv1

dt
	 + �0

dvx1

dt
= fx�x1, �22�

vy0�0
3

c2 �v0 ·
dv1

dt
	 + �0

dvy1

dt
= 0, �23�

vz0�0
3

c2 �v0 ·
dv1

dt
	 + �0

dvz1

dt
= 0, �24�

where fx� is defined as

fx� =
qi

mi
�dEx

d
0
+

vy0

c

dBz

d
0
−

vz0

c

dBy

d
0
	 . �25�

Now, assuming that the perturbed quantities vary with
time as exp�−i�t�, we find from Eqs. �22�–�24� the frequency
� as

�2 = −
fx�

�0�sh
2 , �26�

which indicates that �2 becomes positive if

fx� � 0. �27�

In this case, the perturbation is stable. The perturbation ve-
locity v1 is one-dimensional with

v1 � �1,− �sh
2 vshvy0

c2 ,− �sh
2 vshvz0

c2 	 , �28�

which yields

v0 · v1 =
vx1vsh�sh

2

�0
2 . �29�

This is consistent with the third relation in the ordering �18�.

C. Estimate of energy increase rate for a shock wave

To this point, we have made no assumption on the wave
mode. We now consider magnetosonic shock waves and
make an estimate of the time rate of change of �, Eq. �14�.
Recent studies of nonlinear magnetosonic waves22 have re-
vealed that the magnitude of the parallel pseudopotential F,
which is the integral of the parallel electric field along the
magnetic field

F = −
 E�ds = −
 E�

B

Bx0
dx , �30�

is given as

eF � �mivA
2 + 	eTe�

Bz1

B0
, �31�

in shock waves, where vA is the Alfvén speed, 	e is the
specific heat ratio of electrons, Te is the electron temperature,
and Bz1 is the perturbed magnetic field in the z direction.
�This is the expression for large-amplitude waves. For small-
amplitude magnetosonic waves, we have a slightly different
form for F.22� From Eqs. �30� and �31�, we can make an
order estimation of the parallel electric field E� as

E� �
Bx0

B

F



, �32�

where 
 is the width of a shock transition region ��c /�pi�.
Substituting Eq. �32� in Eq. �14� yields

d�0

dt
�

Bx0
2 �mivA

2 + 	eTe�
mivsh�c/�pi��B · B0�

Bz1

B0
. �33�

III. SIMULATION

We further investigate the acceleration mechanism dis-
cussed in Sec. II with computer simulations. In this method,
we first obtain the electromagnetic fields in a shock wave
from a one-dimensional, fully kinetic, electromagnetic, par-
ticle simulation and then carry out test particle calculations,
in which we follow test particle orbits in these fields with use
of Adams–Bashforth–Moulton method,25,26 assuming that the
shock propagation is stationary. �A shock wave can have
various types of fluctuations, including microscopic thermal
fluctuations. Macroscopic wave profile would vary with a
time scale �c /�pi� /vA, which is of the order of the ion gyro-
period. Some kinetic effects also give rise to the variation of
the wave form: For instance, ion reflection from the shock
front can create an amplitude-oscillation near the shock
front,27 the period of which is also ��i

−1. The time scale of
the ion acceleration investigated in this paper is much longer
than the ion gyroperiod.�

A. Particle simulation

The parameters of the particle simulation are as follows.
The total system length is Lx=8192
g, where 
g is the grid
spacing. The total number of electrons is Ne=576 000; as in
space plasmas, the code contains hydrogen and helium ions
with the number of the latter being 10% of that of the former
�nHe /nH=1 /10�. The hydrogen-to-electron mass ratio was

122104-3 Numerical studies on ultrarelativistic ion motions… Phys. Plasmas 16, 122104 �2009�
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mH /me=50. The ratio of the electron gyrofrequency to
plasma frequency is 
�e0
 /�pe=3.0 in the upstream region.
The Alfvén speed B0 / �4��nHmH+nHemHe��1/2 is therefore
vA /c=0.39. The electron skin depth is c / ��pe
g�=4. The
external magnetic field B0 is in the �x ,z� plane, and the
waves propagate in the x direction. The propagation angle �
is taken to be �=45°. The time step is �pe
t=0.05.

Figure 1 shows the electromagnetic-field profiles of a
shock wave obtained from this particle simulation. Because
Bx is constant, it is not shown here. The shock speed is ob-
served to be vsh=1.79vA; thus, the relation �11� is satisfied.

In Fig. 2, we plot the profile of fx� for the electromagnetic
fields shown in Fig. 1. There exist regions where fx� is nega-
tive; for which Eq. �27� predicts perturbed ion motions are
stable.

B. Test particle simulation

We show two �stable and unstable� cases of test particle
calculations. First, the stable case is discussed: We describe
the motion of a relativistic hydrogen ion that is initially put
at the location x / �c /�pe�=1013.3. At this point, fx��0, and

thus the stability condition �27� is satisfied. According to
Eqs. �4�, �12�, and �13�, we decide the zeroth-order velocity
of the test particle as v0 /c��0.700,−0.119,0.704�. Figure 3
displays the time variations of the velocity components of
the relativistic ion with initial energy �0=100. With these
initial position and velocity, this particle is accelerated along
the magnetic field as predicted in Sec. II. Its velocity v is
almost constant until �H0t�1250, at which the particle is
detrapped and the acceleration ceases. �Although Fig. 1
showed the snapshots at �pet=1200 ��H0t=72�, the time is
normalized to the nonrelativistic ion gyroperiod �H0

−1 in Figs.
3 and 4, which is because the time scale is much longer in
Figs. 3 and 4 than in Fig. 1.�

The upper panel of Fig. 4 shows the time variation of the
Lorentz factor � of this relativistic ion. This particle is ac-
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FIG. 1. Snapshot of field profiles in an oblique magnetosonic shock wave
observed at �pet=1200 in a particle simulation. The fields are normalized to
B0. The shock speed is vsh=1.79vA, and the propagation angle is �=45°. The
fields Bz and Ey have similar profiles, while By, Ex, and Ez are approximately
proportional to �Bz /�x.
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FIG. 2. Profile of fx� calculated from the electromagnetic fields in Fig. 1.
Here, �H0 is the nonrelativistic gyrofrequency of hydrogen ions.
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FIG. 3. Time variations of the velocities vx, vy, and vz of an accelerated
relativistic ion. The initial conditions for the position and velocity for the
acceleration are satisfied �the initial energy is �0=100�. The velocity v is
almost constant until �H0t�1250. Since �=45°, vx�vz during the accel-
eration phase.
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celerated for the period 0��H0t�1250, during which its
energy increases almost linearly in time from �=100 to
��250. The time rate of change of � is observed to be
d� /d��H0t��0.117. This is close to the theoretical value
d� /d��H0t�=0.120, which we have obtained by substituting
the initial values vy0 and vz0 in Eq. �7�. �We can also adopt
Eq. �14� to obtain this quantity. If we use observed values of
��E ·B� / �B ·B0�� in Eq. �14�, where the brackets indicate the
average over the time from �H0t=0 to �H0t=1250, we ob-
tain d� /d��H0t�=0.102, which is consistent with the above
two values. Furthermore, Eq. �33�, which was obtained with
use of the order estimate of the parallel electric field, also
gives the same order of magnitude d� /d��H0t��0.162.�

In the lower panel of Fig. 4, the time variation of vx is
depicted. It oscillates around the zeroth-order value vx0=vsh.
The oscillation period becomes longer as the energy rises,
which is quantitatively examined below in Fig. 7.

Figure 5 displays the orbits of this ion in the �vx1 ,vy1�
and �vx1 ,vz1� planes, where v1=v−v0. The dashed lines rep-
resent the relations between the perturbed velocities,
vy1�0.163vx1 �upper panel� and vz1�0.966vx1 �lower
panel�, given by the theory Eq. �28�. Since v0 slightly varies
with time, and v1 oscillates, we have used v0�t� averaged
over each oscillation period in calculating v1=v−v0. The
trajectories are near the theoretical dashed lines. We note
also, however, that in the late phase of the oscillation, the
value of vy1 moves away from the dashed line, which may be
the sign of the breakdown of the acceleration.

We show in Fig. 6 the time variation of the parallel
component of v1 to v0, 
�v0 /v0� ·v1
 / �v1�. The values
of 
�v0 /v0� ·v1
 / �v1� are much smaller than unity until
�H0t�1100, which verifies that v1 is nearly perpendicular to
v0.

We plot in Fig. 7 the perturbation frequency � as a func-
tion of �0. The perturbation frequency varies in proportion to

�0
−1/2. The simulation results �dots� fit well to the theoretical

curve given by Eq. �26�; in the estimate of Eq. �26�, we have
used the simulation values of fx�.

Figure 8 shows an unstable case. Here, the initial particle
position is x / �c /�pe�=1011.2, at which fx� is positive. If the
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FIG. 4. Time variations of � and vx of an accelerated ion. The Lorentz factor
� increases almost linearly in time until �H0t�1250, and vx exhibits small-
amplitude oscillation.
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that this quantity is much smaller than unity shows that v0 and v1 are nearly
perpendicular.
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particle motion quickly deviates from the zeroth-order
solution, it should be attributed to the fact that fx��0, since
the wave profile is stationary in the test particle calculations.
The zeroth-order velocity at this location is v0 /c��0.700,
−0.119,0.704�, which coincides with the initial velocity v0

studied above. We do not find either increase in � or oscil-
lation of vx. In the stable case �Fig. 4�, the amplitude of the
oscillation of vx at �H0t=1000 was less than 0.41% of the
initial vx, while in the present case, vx decreases by 6.3% by
�H0t=20. This indicates that the particle quickly goes away
from the initial position 
0. The magnitude of the perturbed
velocity vx1 increases with time as exp�0.284��H0t��
during the period 2��H0t�18. This observed growth rate
� /�H0=0.284 is close to the theoretical value estimated
from Eq. �26�, � /�H0�0.260.

IV. SUMMARY

With use of computer simulations, we have studied the
motion of relativistic ions accelerated in the direction paral-
lel to the magnetic field in a magnetosonic shock wave.

We have briefly described this theory for particles accel-
erated along the magnetic field; the assumptions, zeroth-
order velocity v0 of an accelerated particle, and its energy
increase rate. Furthermore, we have discussed its perturbed
motion; the perturbation v1 is a one-dimensional oscillation
in a plane nearly perpendicular to v0, the frequency of which
is proportional to �−1/2. From the discussion of the oscillation
frequency, the condition for the stability of the perturbed
motion is also given.

We have then tested the theory using both particle simu-
lations and test particle calculations; we obtain the fields of a
shock wave from a one-dimensional, fully kinetic, electro-
magnetic simulation, and using these fields we follow test
particle orbits. With this method, we have examined the
zeroth-order motion, energy increase rate, and perturbation
motion �first-order motion� and confirmed that the theoretical
predictions and simulation results are consistent.

The zeroth-order theory predicting the acceleration along
the magnetic field is applicable to both ions and positrons.
The perturbation motions of the ions, however, differ from
those of the positrons; the ion perturbation is a one-
dimensional oscillation and can be unstable, while the posi-
tron perturbation is a stable elliptic oscillation. This differ-
ence suggests that, although persistent positron acceleration
has been demonstrated with particle simulations �the accel-
eration continues even if the shock profile varies with
time�,18 the ion acceleration in this mechanism can be more
fragile.
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