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Development of experimental diagnostics in fusion plasmas has made possible to measure plasma fluctua-
tions with high spatial and temporal resolution. To detect a global mode, which contributes to global transport
phenomena, it is helpful to use simulation data as a test field for the measurements. The turbulence diagnostic
simulator is an assembly of codes for turbulence simulations and numerical diagnostics. Using the turbulence
diagnostic simulator, a time series of turbulence data is obtained, on which numerical diagnostics are carried out
to demonstrate how global modes to be observed. There exist modes, which are broad in the radial direction, and
correlation analyses reveal the characteristic structures with a finite number of local observations in the radial
direction, as in experiments.
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1. Introduction
Turbulent plasmas form a variety of nonlinear struc-

tures [1, 2]. A global structure, which spreads broadly in
the radial direction, can be excited. A local change of the
plasma state contributes to the whole of the structure im-
mediately, so the global structure is one of the candidates
for contributor to the non-local transport [3, 4]. Therefore,
it is important to detect the global structure and clarify its
role on the transport.

Development of experimental diagnostics in fusion
plasmas has made possible to measure plasma fluctuations
with high spatial and temporal resolution [5, 6], and spec-
tral analyses of the data reveal the turbulent structure in
linear devices [7–9] and toroidal devices [10–13]. Usually
a limited number of lines of sight can be used for mea-
surements in experiments, so the information of a three-
dimensional (3-D) structure is limited. Therefore, it is
helpful to use time series of 3-D simulation data as a test
field for the measurements [14]. We have been developing
a turbulence diagnostic simulator, which simulates turbu-
lence diagnostics numerically. Data analyses as same in
the experiments are carried out on the simulation data of
plasma turbulence [15].

In this article, we demonstrate the detection of global
mode structures with a finite number of local observations
on 3-D numerical simulation data of plasma turbulence. A
reduced MHD model is used for generation of turbulent
fields in a helical plasma, and numerical diagnostics are
carried out on the time series of the 3-D turbulent data.
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A global mode is identified from the data including vari-
ous modes. An example of the time evolution of a mode,
which is broad in the radial direction, is obtained by sub-
tracting a single mode from those included in turbulence
simulation, and the characteristic structure of the mode is
revealed from the local observations on the data.

2. Generation of Turbulent Fields
To provide turbulence data, the simulation code of the

resistive drift wave turbulence in a linear device, called
‘Numerical Linear Device’ [16] has been extended to cal-
culate the drift-interchange turbulence in helical plasmas
with a circular cross-section. The averaging method with
the stellarator expansion [17, 18] is applied to give a set of
model equations as

∂∇2⊥u

∂t
= [u,∇2

⊥u] + ∇//∇2
⊥A + [Ω, P] + μ∇4

⊥u, (1)

∂A
∂t
= ∇//(u + αP) + η∇2

⊥A, (2)

∂P
∂t
= [u, P] −C∇//∇2

⊥A + η⊥∇2
⊥P + S , (3)

where u is the stream function, A is the ζ component of the
vector potential, P is the total pressure, ∇// = ∂/∂ζ +
[ ,Ψ ], Ψ = A − (1/2)∇〈Φ〉 × ∇Φζ̂, Φ is the magnetic
potential, α = VA/(2Ωcia), C = γP0VA/(Ωcia), Ω =
2r cos θ + (∇Φ)2 is the magnetic curvature, S is the pres-
sure source, VA is the Alfvén velocity, Ωci is the ion cy-
clotron frequency, a is the minor radius, γ is the specific
heat ratio, η is the resistivity, μ and η⊥ are viscosities, f
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Fig. 1 Potential energy spectrum on poloidal mode number m in
the nonlinear saturation state.

is the average of f over the helical pitch length, and [ ]
is the Poisson bracket. The following normalizations are
used in the model equations: u/(εaVA) → u, A/(εaB0) →
A, P/(εB2

0/μ0) → P, t/tA → t, and r/a → a, where ε is the
inverse aspect ration and tA = a/(εVA) is the Alfvén time.
Here, we assume that variable u represents the normalized
electrostatic potential.

Equations (1) - (3) are solved in the toroidal coordi-
nates with spectral expansion in the poloidal and toroidal
directions. The boundary conditions in the radial direction
are set to f = 0 at r = 0, 1 when m � 0, and ∂ f /∂r = 0
at r = 0, f = 0 at r = 1 when m = 0, where f implies
{u, A, P}, m is the poloidal mode number, and r = 1 gives
an outer boundary of the plasma. In the initial state the
pressure profile is given to be flat. The pressure source is
fixed to be

S (r) =
4S 0μN

LN

⎡⎢⎢⎢⎢⎢⎣1 −
(

r
LN

)2⎤⎥⎥⎥⎥⎥⎦ exp

⎡⎢⎢⎢⎢⎢⎣−
(

r
LN

)2⎤⎥⎥⎥⎥⎥⎦ , (4)

with S 0 = 0.2, LN = 0.6 m, which forms the profile peaked
at r = 0. The magnetic potential is given by

Φ = 2ΦlIl(hr) sin(lθ + hζ), (5)

where Il is the modified Bessel function, l is the pole num-
ber of the helical winding, h = M/R0,M is the pitch num-
ber, R0 is the major radius, and Φl is a constant coefficient.
The following parameters are used: B = 2.0 T, Te = 1 keV,
a = 0.6 m, R0 = 3.75 m, μ = η = η⊥ = 1 × 10−5, l = 2,
M = 10, Φl = 0.2. Rotational transform ι is give by
a monotonically increasing function with the radius from
ι(0) = 0.41 to ι(1) = 1.17.

Simulations are performed with 1024 grids in the ra-
dial direction. Fourier modes −64 ≤ m ≤ 64, −16 ≤
n ≤ 16 are taken, where n is the toroidal mode number.
Spatio-temporal data of turbulent fields are generated by
this global simulation. Low m, n modes are excited in the
linear growing phase, and saturation is obtained with en-
ergy exchange between various modes by nonlinear cou-
plings. Figure 1 shows the energy spectrum of the elec-

Fig. 2 Snapshot of the contours of the electrostatic potential.
The poloidal cross-section at ζ = 0 and t = 3000 is
shown, where the plane with y = 0 is the midplane, the
region with x > 0 is the low field side, and (x, y) is the
Cartesian coordinates whose origin is set at the center of
the plasma. Locations where local observations are car-
ried out are indicated by 17 crosses (+) in this figure.

trostatic potential on m in the nonlinear saturation state.
These excited modes give the electrostatic potential profile
as in Fig. 2.

3. Numerical Diagnostic on Simula-
tion Data

3.1 Set up of a one-dimensional array of di-
agnostics

In experiments, a finite number of local observations
give the radial profile. Here we carry out the analysis sim-
ulating the experimental measurement on the time series of
3-D fields calculated in Sec. 2. One-dimensional (1-D) sig-
nals at θ = 0 and ζ = 0 are taken from 3-D fields to show
the radial profile. Data on 17 points, shown by crosses
on Fig. 2, give the time evolution of the radial profile of
the electrostatic potential as in Fig. 3 (a). The electrostatic
potential oscillates in the whole region of the plasma. Fig-
ure 3 (c) shows the frequency spectrum at r = 0.4a, calcu-
lated from the time series data shown in Fig. 3 (b). Coher-
ent modes exist near f ∼ 0.025, 0.051, 0.076 and so on.
There are global modes with poloidal mode number m = 0
in these frequency ranges, which give the sharp peaks in
the spectrum.

3.2 Spatio-temporal correlation
The time evolution of the radial profile as in Fig. 3 (a)

suggests the existence of a global mode. However, its en-
velope is modulated from time to time, so the relation be-
tween different radial positions of the plasma is not clear.
We discuss the process for the deduction of the structure
in this subsection. A correlation analysis is carried out to
find out the characteristic structure. Here the data set from
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Fig. 3 (a) Time evolution of the radial profile of the electrostatic
potential at θ = 0 and ζ = 0. (b) Time evolution of the
electrostatic potential at r = 0.4a, indicated by the dashed
line in (a). (c) Frequency spectrum of (b).

t = 3000tA to 5000tA is analyzed, which corresponds to the
duration of about 30(a/cs), where cs is the ion sound veloc-
ity. Figures 4 show the cross-correlation functions between
different radial positions. Two reference points are selected
at r = 0.2a and 0.6a. At the both points, the oscillation
corresponding to the fundamental frequency in Fig. 3 (c) is
sustained for a long duration, and there are large correla-
tions with the whole of the other radial position. In this
way, existence of the global mode is clearly shown by this
correlation analysis with the 1-D set of fluctuation signals.

4. Identification of Radial Structures
4.1 Target fluctuations

Global structures of fluctuations have been studied
with the turbulence data in the previous section. In this sec-
tion, a single mode (m, n) = (1, 2) is artificially subtracted
from the various modes excited in the nonlinear simula-
tion. The subtracted mode is not dominant, and the ratio-
nal surface with ι = 2/1 does not exist inside the plasma
in this simulation. The snapshot of the contours and eigen-

Fig. 4 Cross-correlation functions between different radial posi-
tions. The reference positions are set at r = (a) 0.6a and
(b) 0.2a.

Fig. 5 Snapshot of (a) the contours and (b) eigenfunction of the
(1, 2) mode at t = 3000.
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Fig. 6 (a) Time evolution of the radial profile of the electrostatic
potential of the (1, 2) mode at θ = 0 and ζ = 0. (b) Time
evolution of the electrostatic potential at r = 0.4a. (c)
Frequency spectrum of (b).

function of the (1, 2) mode are shown in Fig. 5. This mode
is selected as an example of a mode with a radial structure
and transient evolution, and estimation of its structure is
demonstrated.

A finite number of local observations at the same po-
sitions with those shown in Fig. 2 give the time evolu-
tion of the radial profile of the electrostatic potential as in
Fig. 6 (a). The electrostatic potential oscillates in the whole
region of the plasma, and its envelope is modulated from
time to time. However, the relation between different radial
positions of the plasma is not clear from this figure.

4.2 Spatio-temporal correlation
Global structures of fluctuations are deduced from sig-

nals of the 1-D array. A spectrum analysis is carried out.
Figure 6 (c) shows the frequency spectrum at r = 0.4a, cal-
culated from the time series data shown in Fig. 6 (b). A
peak exists near f ∼ 0.04. A peak in the same frequency
range also exists at different radii.

A correlation analysis gives the feature that the mode

Fig. 7 Cross-correlation functions of the (1, 2) mode between
different radial positions. The reference positions are set
at r = (a) 0.6a and (b) 0.2a.

structure can be divided into two parts whose boundary is
located at r ∼ 0.4a. Figures 7 show the cross-correlation
functions between different radial positions. Two reference
points are selected at r = 0.2a and 0.6a. The half width at
half maximum (HWHM) of the envelope is evaluated as
a typical sustaining duration of the structure. Temporal
sustaining durations HWHM are 27tA and 68tA at r = 0.2a
and 0.6a, respectively, so the structure is sustained longer
in the outer region. The spatial correlation lengths HWHM
are 0.10a and 0.21a at r = 0.2a and 0.6a, respectively.
The result shows that the structures at r = 0.2a and 0.6a
are not strongly connected with each other, and there are
two structures; one exists in the inner part of the plasma
around the position at r = 0.2a, and the other exists in
outer region around r = 0.6a. There is overlap of them in
the intermediate region around r = 0.4a.

Transient evolution can also be studied by this corre-
lation method. The structure at r = 0.4a is sometimes the
part of the inner and sometimes the part of the outer. There
is a moment when a large structure appears as shown in
Fig. 5, which includes both of the inner and outer struc-
ture. The temporal sustaining duration and spatial correla-
tion length is 45tA and 0.27a, respectively, so the correla-
tion length is the largest at r = 0.4a. In this way the spa-
tial and temporal mode structure of the subtracted mode is
identified by calculating the radial correlation of fluctua-
tions. The physical mechanism of the structural formation
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will be discussed in separated articles.

5. Summary
In summary, we have carried out the nonlinear sim-

ulation of the drift-interchange turbulence in the helical
plasma. Two examples of 1-D data sets were subtracted
from the 3-D turbulence data; one including all modes cal-
culated in the nonlinear simulation, and the other including
only single mode broad in the radial direction. The analy-
ses on the data show the characteristic radial structures of
the dominant mode and the subtracted mode, respectively,
and are found to be effective for identification of the global
structures. If the number of the detection point is too small
to identify the structure in experiments, the analysis gives
estimation of the appropriate number of observations. This
is preparation of more sophisticated comparison between
experiments and numerical simulations of plasma turbu-
lence.
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