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1. Introduction

The plasma turbulent transport has long been one of the
central subjects in the magnetic confinement fusion research.
Since the collision frequency is much lower than character-
istic ones of the turbulence in a core region of tokamaks with
high temperature, in order to study the turbulent transport,
one needs to deal with a kinetic description of the magnetized
plasma such as the gyrokinetic equation. Numerical
simulations of the gyrokinetic plasma turbulence have rapidly
developed in the last decade [1], and revealed several
important aspects of the anomalous transport. For example,
turbulence suppression by the self-generated zonal flow has
been investigated by many authors [2], where interactions of
low-order velocity space moments of the one-body distribu-
tion function f and the electromagnetic field have been
discussed intensively. In the collisionless or weakly-collisional
plasma, however, a velocity space profile of f should have
more degrees of freedoms than those characterized by the
low-order moments such as the density, the flow velocity, the
temperature and so on. Even though a transport flux is defined
by a correlation of the low-order moments and the electro-
magnetic field, fine-scale structures of f should be properly
treated in numerical simulations.

The one-body velocity distribution function f in a
collisionless plasma turbulence is stretched and folded by the
Hamiltonian flow in the phase space while preserving its
amplitude. This is known as the phase mixing which leads to
continuous generation of fine-scale fluctuations of f, and is
closely related to the paradoxical argument how the
collisionless turbulence described by the kinetic equation with

the time-reversal symmetry causes the steady transport flux
with no dissipation mechanism. If the steady transport driven
by constant density and/or temperature gradients is observed
through coarse-graining of f with fine-scale structures, a
quasisteady state of the collisionless turbulence should be
realized, where high-order velocity-space moments of f
continue to grow while keeping low-order ones constant in
average [3,4].

In comparison of collisionless turbulence simulation
results with actual plasma experiments, it is implicitly as-
sumed that an asymptotic behavior of the transport coefficient
in a low-collisionality limit agrees with the collisionless one
in the quasisteady state. The finite collisionality is indispen-
sable to realizing the real statistically steady states for all
order-moments of f. The entropy variable associated with
fluctuations is produced by the turbulent transport on a macro
velocity scale corresponding to the low-order moments. Then,
it is transfered in the phase space by the E ¥ B nonlinearity
and the phase mixing, and is, finally, damped by collisions
acting on a micro scale associated with the high-order
moments.

In order to confirm the critical issues on collisionless and
weakly-collisional turbulence given in the above two
paragraphs, we have investigated the slab ion temperature
gradient (ITG) driven turbulence by means of the Eulerian
(Vlasov) kinetic simulations with high velocity-space
resolution [5-7]. Results obtained in our previous works are
reviewed in the next section with the aim of introducing the
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background of the simulation studies given in the latter part
of this paper. Artificial effects of coarse numerical grid on
the transport coefficient are shown in Sec. 3, which
demonstrates importance of the velocity-space resolution in
simulations of the kinetic plasma turbulence. Our recent
progress in the toroidal ITG simulation is also reported in
Sec. 4. A summary is given in Sec. 5.

2. A review of the slab ITG simulation by

the Eulerian kinetic code

2.1 Simulation model

We consider the following simulation model which is
defined in a two-dimensional slab geometry with the trans-
lational symmetry in the z-direction. The periodic boundary
condition is used in the x and y directions. The uniform
magnetic field is set in the y-z plane such that B = B (ẑ + q ŷ)
for q << 1. The governing equations are derived from a v^-
integral of the electrostatic gyrokinetic equations [8] by
ignoring the parallel nonlinear term and by assuming d fk (v||,
v^) = f̃k (v||) FM (v^), where FM is the Maxwellian velocity
distribution. We also assume constant density and temperature
gradients of the background ions in the x-direction with scale-
lengths of Ln

–1 � –d (ln n)/dx and LT
–1 � –d (ln Ti)/dx, where Ln,

LT >> L (L denotes the perpendicular system size). Therefore,
we arrive at the following equations given in the wave
number space k = (kx, ky), such that

(1)

and

1 0
2 22

-[ ] = - ,- /
,ÚG ( ) ˜ ( ) ˜|| ||k f v v n

k
efk k ke d (2)

where the electric potential fk is related to Yk by Yk = e–k2/2 fk

with k2 = kx
2 + ky

2. Also, Q = q Ln/ri and hi = Ln/LT. The
background electron temperature Te = Ti and the adiabatic
electron response are also assumed. Here, we consider a
limiting case with no zonal flow component of ky = 0 by fixing
f̃ky=0 = fky=0 = 0. The instability drive is contained in the first
group of terms on the right-hand side of Eq. (1). The last term
on the right-hand side denotes the ion-ion collision term for
which we employ the Lenard-Bernstein model collision
operator,

C f v f vi v v( ˜ ) [ ] ˜ ( )
|| || || ||k k

= � � + ,n (3)

with the collision frequency n normalized by vti/Ln. More
complete descriptions of the simulation model as well as the
normalization are given in Refs. [5,6].

Equations (1) and (2) are numerically time-integrated by
means of the nondissipative integrator for the collisionless
case [9-11] or the fourth-order Runge-Kutta-Gill (RKG)
method for the weakly collisional ones. The E ¥ B advection

term is calculated by the pseudo-spectral method with the
3/2-rule for de-aliasing.

2.2 Steady and quasisteady states of ITG

turbulence

From Eqs. (1) and (2), one finds a balance equation of
entropy variable defined by a functional, d S = Sk Ú dv|| | f̃k |2/
2FM, that is,

d

dt
S W Q Di id h+( ) = + , (4)

where, Qi, W, and D mean the perpendicular ion heat flux,
the potential energy, and the collisional dissipation,
respectively. Their explicit definitions are as follows;
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Since d S is rewritten as d S = SM – Sm within the second order
for d f = f – FM (where SM = – Úd3v FM ln FM and Sm = –· Ú d3v

f ln f Ò represent macroscopic and microscopic entropies,
respectively), we call it the entropy variable, hereafter. Here,
· ···Ò means the spatial average.

Existence of the quasisteady state in the collisionless ITG
driven turbulence is confirmed by our Eulerian kinetic
simulation with high resolution for the velocity space [5],
where monotonic increase of dS balances with the transport
in a saturated turbulent flow, such that

d d( )d hS t Qi i/ ª . (5)

It means that d f never reaches to the steady state in the
collisionless case, even if a steady transport flux defined by
the low-order moments is observed. Continuous generation
of fine-scale structures of d f in the velocity space, due to the
phase mixing caused by the parallel advection term on the
left-hand-side of Eq. (1), is responsible for the increase of
d S.

In the weakly-collisional case, not only low-order but
also all-order moments of the distribution function can be
statistically steady. This is because the fine-scale structures
of d f in the velocity space are smoothed out by the collision
operator with the second-order derivative. It is also nume-
rically confirmed that d (d S)/dt ª 0 and

hi iQ Dª - > 0 (6)
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in the real statistically steady state of the slab ITG turbulence
[6].

2.3 Collision frequency dependence

We have also investigated collision frequency depend-
ence of the ion thermal transport coefficient ci defined as ci

� Qi / hi. A parameter survey for a wide range of n shows a
logarithmic dependence of the transport coefficient on
relatively large values of n while ci approaches a value in the
collisionless case for sufficiently low collision frequency. This
conclusion agrees with a concept that the quasisteady state is
an idealization of the real steady state in the weak-collisiona-
lity limit [12].

A spectral analysis of d f in the velocity space has also
been made by means of the Hermite-polynomial expansion
[6,7]. The obtained spectrum has almost the same values at n
= 1, 2, and 3 even for different values of n (where n denotes
the order of the Hermite-polynomials), which agrees with ci

being independent of n in the low collisionality cases. This is
also consistent with the conjecture by Krommes and Hu that
‘flux determines dissipation’ [3]. The entropy variable
produced in the macro velocity scale on the low-n side is
transfered toward the micro scale with high-n values and the
large wave numbers (k) by the phase mixing and the E ¥ B
nonlinearity. Then, it is dissipated by the collision term on
the high-n side.

2.4 Methodological issues in numerical simula-

tions of the collisionless plasma turbulence

In order to simulate the collisionless plasma dynamics
with the time-reversibility, we have developed an Eulerian
simulation method based on the symplectic integrator [9-11].
The nondissipative simulation scheme for solving Eq. (1) is
designed so as to preserve the time-reversibility and the
phase-space integral of f 2 that is an invariant of the Vlasov
and the collisionless drift (gyro-) kinetic equations. The
numerical accuracy in dealing with the time-reversible plasma
dynamics including the phase mixing process has been
verified by the plasma echo simulation [11] as well as the 3-
mode ITG problem [9,10]. The sufficient velocity-space
resolution to the fine-scale structures of d f is indispensable
to keep soundness of the numerical simulation, which is
demonstrated in the next section by comparing the results
with different grid spacings in the velocity space.

The kinetic-fluid closure model is based on existence of
the quasisteady state of the collisionless plasma turbulence.
The kinetic simulation result for the collisionless ITG turbu-
lence agrees well with the collisionless fluid one with the
nondissipative closure model (NCM) [12,13]. By employing
the NCM in the fluid equations, the time-reversibility of
unstable linear kinetic eigenmodes can be preserved, which
is essential to fluid simulations not only of the 3-mode ITG
problem [12] but also of the turbulent transport [13].

3. Effect of velocity space resolution

As summarized in the above, it is important in kinetic

simulations of collisionless plasma turbulence to keep suf-
ficient resolution to the fine-scale structures of d f generated
by the phase mixing. We have observed artificially enhanced
transport flux in cases with a coarser grid in the velocity space
as shown below. For comparison, we have carried out the
collisionless slab ITG turbulence simulations for Dv / vti = 5/
16, 5/32, 5/64, and 5/256 with the same physical and other
numerical parameters as given in Ref. [5]. Time-evolutions
of the transport coefficient ci are plotted in Fig. 1 (top and
middle) for different D v. As typically seen in cases for Dv /
vti = 5/16 and 5/32, ci gradually increases in the turbulence
after t ~ 300 or 400. The higher values of ci averaged from t
= 800 to 1000 are observed for larger D v in the bottom of
Fig. 1. For D v / vti = 5/16 and 5/32, ci is twice larger than
that reported in Ref. [5] where the sufficient resolution was
kept during the simulation (Dv / vti = 5/4096). As D v becomes
smaller, the time-averaged ci approaches to its proper value
(shown by the horizontal dashed line) obtained in the
quasisteady state of the collisionless turbulence. This is
because the finest scale of d f in the velocity space reaches to
the grid scale at earlier time for larger D v. Thus, the result
from the simulation with a coarser grid suffers from the larger
aliasing error. The obtained result demonstrates the
importance of keeping enough velocity-space resolution in the
collisionless ITG turbulence simulation. In order to avoid the
aliasing error, one should stop running the collisionless
simulation before the finest scale-length of d f becomes
comparable to the grid size. Then, if the collisionless
turbulence had not reached to the quasisteady state yet, it is
necessary to employ the finer resolution.

4. Development of a toroidal ITG simula-

tion code for a flux tube geometry

We are developing the gyrokinetic-Vlasov simulation
code for the toroidal ITG mode in a flux tube geometry for a
tokamak configuration. The coordinate system and the
boundary condition are based on the work by Beer [14],
where concentric circular magnetic surfaces with a large
aspect ratio are assumed. We consider the gyrokinetic equa-
tion for ions [15,16], the adiabatic electron response, and the
quasi-neutrality. As the first trial, we deal with passing ions
only, while neglecting the mirror force term. Spatial
coordinates in radial (x) and field-line-label (y) directions are
discretized by the Fourier expansion, while the parallel (z)
derivatives are approximated by the fifth-order upwind finite
difference. The parallel velocity (v||) and the magnetic
moment (m) are chosen for the velocity space coordinates
which are discretized by grid points. The RKG method is used
for the time-integration. The simulation code is well
optimized in order to achieve high efficiency for vector and
parallel operations.

The linear growth rate of the toroidal ITG modes for the
Cyclone DIII-D base case parameters [1] are shown in Fig.
2, where the solid and dashed lines represent the real and
imaginary parts (denoted by wr and g ) of the eigenfrequency
obtained by the linear gyrokinetic code [17], respectively.
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Fig. 1 (top and middle) Time-evolutions of the ion thermal
transport coefficient (ci) obtained by the collisionless
ITG turbulence simulations for Dv / vti = 5/16, 5/32, 5/64,
and 5/256. (bottom) Time-averaged ci from t = 800 to
1000 for different Dv in comparison to the case with the
high velocity-space resolution of Dv / vti = 5/4096 (hori-
zontal dashed line).

Here, we have employed (84, ±20, ±32, ±64, 32) modes/grid
points in the five-dimensional (kx, ky, z, v||, m)-space, where kx

and ky denote the wave numbers in the x- and y-directions,
respectively. Solid squares and open circles indicate wr and g
given by the gyrokinetic-Vlasov simulation results which
agree well with the linear code prediction.

In the absence of the electric field, the initial density
perturbation ñ with the ballooning type mode structure is
damped due to the phase mixing associated with the toroidal
particle drift. Its asymptotic behavior is proportional to t–2

[17], since not only the parallel advection term but also the
toroidal magnetic drift terms contribute to generation of fine-
scale structures of the distribution function in the phase space.
The collisionless damping process can be successfully
reproduced by our simulation as shown in Fig. 3, where a
finer numerical grid for the (v||, m)-space is employed, such
as (±192, 64) grid points, in order to continue the run up to t
= 100 Ln/vti. In lack of the resolution, otherwise, ñ unphy-
sically grows at earlier time. The result demonstrates that, also
in a tokamak configuration, treatment of the fine-scale
structures of the distribution function is one of the key issues
for simulating the collisionless damping.

5. Conclusions

In this paper, we have reviewed our recent progress in
kinetic simulations of the steady and quasisteady states of the
slab ITG turbulent transport. Even though the transport flux
is directly related to the correlation between the low-order
moments and the electric field, high-order moments
associated with the fine-scale structures of the distribution

Fig. 2 Real frequency (wr) and linear growth rate (g ) of the
toroidal ITG modes for the Cyclone DIII-D base case
obtained by the gyrokinetic-Vlasov simulation code.
Solid and dashes lines indicate wr and g obtained by the
linear gyrokinetic code [17].

Fig. 3 Collisionless damping of the density perturbation in a
tokamak configuration in absence of the electric field
(solid). Dashed line represents the asymptotic behavior
(µ t –2) predicted in Ref. [17].
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function should also be taken into account accurately. This is
because they are related with each other through the transfer
of the entropy variable in the phase space. In numerical
simulations of the kinetic plasma turbulence, thus, it is
essential to keep enough resolution for the fine structures
which are spontaneously generated by the phase mixing in
the velocity space. Lack of the resolution may lead to artific-
ially enhanced transport flux through the aliasing error as
demonstrated in this paper. In addition, taking into account
of the time-reversibility of the collisionless kinetic equation
is also a key issue in numerical studies of the collisionless
turbulence, which was a fundamental motivation in develop-
ment of the nondissipative closure model [12,13]. In a toroidal
configuration, the phase mixing by the toroidal magnetic drift
and the parallel advection terms generates the fine-scale
structures. A toroidal version of our Eulerian kinetic simula-
tion code is successfully applied to the collisionless damping
in a tokamak configuration. Simulations of the toroidal ITG
turbulent transport is currently in progress and will be
reported elsewhere.
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