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Relativistic laser-plasma interaction is a source of
various electronic instabilities. In particular, a large
effort has been put into studies of backward and for-
ward stimulated Raman scattering (SRS) and relativis-
tic modulational instability (RMI) for varying laser-
plasma parameters. The theory of electron paramet-
ric instabilities predicts the relativistic broadening and
merging of unstable regions for SRS and RMI at high
laser intensities.

We study by one-dimensional relativistic particle-in-
cell simulations, a linearly polarized relativistic laser
(1017 W/em? < I < 10'® W/cm?) interacting with a
plasma layer (T. ~ 1keV) at a subcritical density range
(ne/4 < n/vy < m.); where v is the relativistic fac-
tor. In regions which are overdense for standard SRS,
intense coherent reflectivity pulsations at frequencies
below the electron plasma frequency (w,) are typi-
cally observed in our simulations. In early stage, the
spectrum is well explained by a resonant 3-wave para-
metric decay of the relativistic laser pump into the
slowed (~ "critical”) Stokes light sideband (ws ~ wp)
and the trapped electron-acoustic wave (TEAW, with
wq < wp). This appears a relativistic version of stim-
ulated electron-acoustic scattering (R-SEAS), recently
studied by a number of authors. In nonlinear satura-
tion, there is a rapid growth and strong localization of
the Stokes wave by forming narrow intense EM soliton-
like structures with (downshifted) laser light trapped
inside. The train of relativistic EM solitons gets ir-
radiated through the front vacuum-plasma boundary
in a form of intense coherent reflection of the down-
shifted laser light (Fig. 1, 2). Large TEAW excited
in the plasma quickly heats up electrons to relativistic
energies (Fig. 3) which eventually suppresses the insta-
bility in our simulations. For example, 1 psec pulse of
the fundamental light at 10® W/cm? transmits about
70 % of laser energy while propagating through the 20
microns thick uniform subecritical plasma at n = 0.7n,,
placed in vacuum. However, in a similar case, a shorter
0.5 psec pulse experiences just 40 % transmission due
to large transient backscatter and absorption. This
novel behavior which alters the distribution of rela-
tivistic laser energy between transmission, scattering
losses and generation of energetic electrons has es-
caped earlier attention while being possibly relevant
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to future fast ignition and hohlraum target experi-
ments. We plan to further address this problem by
two-dimensional (2D) and 3D simulations.
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Fig. 1. Time evolution of reflectivity (left) and spec-
trum of scatterd electromagnetic field (right).
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Fig. 2. Time evolution of electromagnetic field.
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Fig. 3. = — p, phase space plot of electrons.





