
  
Investigating numerical techniques for the image 

reconstruction of large size is needed in various scientific 
measurements such as three-dimensional (3D) tomographic 
imaging in nuclear fusion research, electron microscopy 
and the adaptive optics for large telescope.  Advanced 
study on the missing observation problem is needed on the 
basis of the fusion research activity of 2D tomography with 
limited angular data.  
 Since the missing observation requires us to take the 
approach of finding a solution (image reconstruction) that 
fits to available data, we have to meet linear equation 
systems that are large, sparse and ill-conditioned, especially 
when we take model-free algebraic approach.  As the 
systems become larger, the Tikhonov-like direct solvers 
using the singular value decomposition etc. are anticipated 
to become disadvantageous. Rather, high interest is taken in 
the recently developed iterative solvers. 

The fast iterative solver ART and the least-squares 
one SIRT, which are well known in fusion research, are 
“stationary” in the sense that the operator for solution 
update is kept constant throughout the iteration process.  
The Hopfield neural network [1] is also stationary under a 
framework involving a strong means of regularizing the 
solution.  Meanwhile, one says that the “unstationary” 
solvers using the Krylov subspace [2] can be faster than the 
stationary solvers, and that they might be weak for ill-
conditioned equation systems. Experimental study is a 
current subject. 

The “missing wedge” problem in electron tomo-
graphy is worth taking as a priority target.  After the small 
image reconstruction of one virus particle by the Hopfield 
methods [3], some methods of Krylov subspace have been 
examined on 2D numerical phantoms in relation to the 
multi-slice scan of the whole specimen.  A result is shown 
in Figs. 1 and 2.  With respect to the original image of 
specimen (Fig. 2), the projection matrix, that is, the coeffi-
cient matrix A of a linear equation Ax=b to be solved, has a 
size of 202,124 x 2,097,152 with a low density of nonzero 
element 0.04%.  A sequence of 1D projections b was 
numerically generated, with additive Gaussian noises of 1%, 
at rotation angles that are equally spaced with a period of 2º 
in the interval [-70º, 70º].  

As seen in Fig. 1, in comparison with the well-known 
method of conjugate gradient, a modified method of 
BiCGSTAB is improved in the stability of convergence, 
and the method of Orthomin is excellent also in speed.  
The relative residual is defined as  || rk ||

2 / || r0 ||
2 for the k-th 

iteration, and the results of solving AATy=b with an initial 
random-number solution y0 are exhibited here. In the 
reconstructed image (Fig. 2), the effect of missing wedge is 
recognized as artifacts that are elongated in the horizontal 
direction where the projection data are missed.  These 
methods were comparable with ART in reconstructed 
images and computing times.  

The solved linear equation system is large enough in 
size for the 3D tomography of LHD using infrared imaging 
video bolometers (IRVB).  To obtain the efficiency of 
image reconstruction superior to ART and SIRT, the next 
step of research is the application of the new methods to the 
least-squares regularization of Tikhonov type, that is, the 
minimization of penalty functions under explicit constraints. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1:  Convergence histories in image reconstruction 

by the Krylov subspace methods of CG (Con-
jugate Gradient), BiCGSTAB (BiConjugate 
Gradient STABilized), and Orthomin(100). 

 
 
 
 
 
 
 
Fig. 2:  A result of image reconstruction; (upper) the 

original image with 512x4096 pixels, (lower) the 
image reconstructed after 5,000 iterations by the 
method of Orthomin(100). 
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