§ 13. Image Reconstruction of LHD Plasma in Bolometer Tomography

Iwama, N. (School of Informatics, Daido Institute of Technology)
Hosoda, Y. (Dept. Information Science, Fukui Univ.) Peterson, B.J.

The 2-D distribution measurement of radiation by means of AXUV silicon photodiode arrays [1,2] was developed in adopting a numerical tool of image reconstruction of computed tomography. With respect to the camera system amounted in a semi-tangential cross section of LHD (Fig. 1), the Tikhonov-Phillips regularization method for inversion [3] was applied to detector signals. A square region which covers the triangular plasma region presumed from the magnetic surface configuration was devided to 32×32 pixels, and the projection matrix that was geometrically calculated by taking into account the sight volumes of detectors [1] was used.

Given the projection matrix L and the M-dimensional data vector $S(M=40)$, the image vector estimate \boldsymbol{E} with the Laplacian smoothing operator C is written in a form of series expansion; that is, we have

$$
E(\gamma)=\sum_{i=1}^{N} w_{i}(\gamma)\left(\sigma_{i}^{-1} u_{i}^{T} S\right) C^{-1} v_{i}
$$

Here u_{i}, v_{i} and σ_{i} are the singular vectors and the singular values of $L C^{-1}$, and $\dot{w}_{i}(\gamma)=\left(1+M \gamma \sigma_{i}^{-2}\right)^{-1}$ is a lowpass filter function with the regularization parameter γ; we have $N=\min (M, K)$ for the pixel number K. In order to neglect the pixels on the outside of the plasma region in numerical processing, the vector \boldsymbol{E} was reduced in dimension, and the corresponding columns of L and the related columns and rows of C were omitted.

A result of analyzing the camera signals is shown in Figs. 2 and 3. The obtained contour map in Fig. 2 exhibits the radiation intensity distribution in an asymmetric radiative collapse of NBI heated plasma [2]. This map was obtained for the γ value that minimized the generalized cross validation (GCV), which is written as

$$
G C V(\gamma)=\frac{\varepsilon^{2}(\gamma)}{\left[1-\frac{1}{M} \sum_{i=1}^{N} w_{i}(\gamma)\right]^{2}}, \quad \varepsilon^{2}(\gamma)=\frac{1}{M}\|L E(\gamma)-S\|^{2}
$$

As a function of γ, the $G C V$ behaved as plotted in Fig. 3 in this example, while the mean square error $\varepsilon^{2}(\gamma)$ of the chord-integrated value $L \boldsymbol{E}(\gamma)$ in fitting to the detector outputs S was monotonically decreased with γ. This behavior of $\varepsilon^{2}(\gamma)$ was favorable, endorsed by the good fittings of all the chord-integrated values without large errors.

Fig. 1. Layout of two 20-channel fan-beam cameras in the semi-tangential cross section with 3.5 U and 4-O ports.

Fig. 2. Reconstructed profile during radiative collapse in the triangular region; Shot 28961, 2.162 sec .

Fig. 3. Changes of $G C V(\gamma)$ and $\varepsilon^{2}(\gamma)$ (MSE) with γ. $G C V(\gamma)$ was minimized for $\gamma=1.0 \times 10^{-4}$.

References

1) Kostriukov, A.Yu., Liu, Y. et al., Ann. Rep. NIFS (2 001-2002) 157.
2) Peterson, B.J. et al., Ann. Rep. NIFS (2001-2002) 55.
3) Terasaki, N., Iwama, N. and Hosoda, Y., Trans. IEICE J81-D-II, (1998) 93.
