
Introduction Before executing a numerical code based on
the Finite Element Method (FEM) or the Boundary Element
Method (BEM), a region must be divided into a set of ele-
ments. For the purpose of removing the element decompo-
sition from a numerical code, meshless approaches such the
Finite Node Method (FNM)1, 2, 3, 4) and the Boundary Node
Method (BNM)5, 6, 7) have been so far proposed. However,
they have been plagued by various difficulties. First of all,
in the FNM, the Lagrange multiplier method is adopted as
the implementation method1, 3, 4) of essential boundary con-
ditions. Thus, the boundary value problem of the governing
equation must be first rewritten into the equivalent variational
form. On the other hand, the number of unknowns for the
BNM is twice as many as that for the BEM5, 6, 7) and, hence,
the computational cost required for the solution of the dis-
cretized equation in the BNM becomes about 8 times as much
as that in the BEM.

The purpose of the present study is to algebraically for-
mulate the FNM without using the variational principle. In
addition, we propose the method for reducing the number of
unknowns for the BNM by half.

eXtended FNM For simplicity, we consider the following
two-dimensional (2D) Poisson problem on the domain Ω
bounded by a simple closed curve ∂Ω:

−∇2u = p in Ω, (1)
u = ū on ΓD, (2)
∂u
∂n
= q̄ on ΓN, (3)

where ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ϕ. In addition, n denotes
an outward unit normal on ∂Ω. Furthermore, the superposed
bar indicates prescribed boundary values and p(x) is a given
function on Ω. As is well known, both eqs. (1) and (3) are
satisfied if and only if the following weak form is fulfilled:

∀w s.t. w|ΓD = 0 :�
Ω

∇w · ∇u d2x =
�
Ω

wp d2x +
∫
ΓN

wq̄ ds = 0. (4)

Let both the test function w(x) and the trial function u(x)
satisfy w, u ∈ span(ϕ1, ϕ2, · · · , ϕN), and let the function space
on ΓD be limited to span(N1,N2, · · · ,NK). Then, as the dis-
cretized form of the weak form (4), the following proposition

is obtained :
∀w ∈ Ker CT : wT (Au − f ) = 0, (5)

where N-dimensional vectors, w and u, correspond w(x) and
u(x), respectively. In addition, A, C and f denote an N × N
matrix, an N×K matrix and an N-dimensional vector, respec-
tively. By taking account of Ker CT = (Im C)⊥, the above
proposition (5) is equivalent to Au− f ∈ Im C. Moreover, the
discretized form of eq. (2) can be written as CT u = g. Hence,
the discretized form of the 2D Poisson problem can be written
in the form, [

A C
CT O

] [
u
λ

]
=

[
f
g

]
. (6)

Note that eq. (6) coincides with the matrix equation for the
FNM. In this way, the FNM is algebraically formulated with-
out employing the variational principle.

Although the 2D Poisson problem is used to demon-
strate the algebraic formulation of the FNM, the discretization
procedure used in the present study is applicable to general
boundary-value problems.

eXtended BNM As mentioned above, the number of un-
knowns for the BNM is twice as many as that for the BEM.
The reason for this is explained as follows. In the conven-
tional BNM, the shape functions {ψi(s)}Ni=1 are determined
by means of the Moving-Least Square (MLS) approximation
and, therefore, the functions do not at all satisfy the delta
function property: ψi(s j) = δi j. However, it is the delta
function property that plays an important role in reducing the
number of unknowns in the discretized equation. In contrast,
the property is always fulfilled by the shape functions of the
BEM. Hence, the number of unknowns for the BEM is equal
to the number of nodes on the boundary.

In order to have the delta function property satisfied by
the shape functions, we employ not the MLS approximation1)

but the Radial Point Interpolation Method (RPIM)8) to the de-
termination of the shape functions. As a result, the CPU time
required for the solution of the discretized equation success-
fully reduces by a factor of eight.

From the above result, we can conclude that the RPIM
is useful to accelerate the BNM.
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