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1) Introduction

Mukherjee et al."” proposed the boundary node method
(BNM) for solving the boundary-value problem of a partial
differential equation. Since the BNM is one of meshless
approaches, elements of a geometrical structure are no
longer necessary and, hence, the preparation of data is con-
siderably simplified. However, the BNM has been plagued
by its inherent difficulty: the boundary must be divided into
a set of cells to evaluate contour integrals. Hence, a concept
of elements is partly included into the BNM.

The purpose of the present study is to formulate the
boundary node method without using any integration cells
and to investigate its performance by comparing with the
boundary element method (BEM).

i1) Boundary Node Method without Cells

As a potential problem, we consider a two-dimensional
(2-D) Laplace problem in the region Q bounded by 0Q.
As is well known, a 2-D Laplace equation is equivalent to
the following boundary integral equation:
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where w*(x,y)=—log|x—y|/(27), q=0u/on and s is
an arclength along 0. Two numerical techniques are in-
dispensable for discretizing eq. (1): the one is the method for
evaluating a contour integral along 0Q and the other is the

approximation for the distribution of # and g on 0Q2.

First of all, let us explain the numerical method for evalu-
ating a contour integral. In the conventional BNM, integra-
tion cells are employed for this evaluation. In contrast, the
integral is directly calculated by use of the vector equation
of 0Q
plicit-function representation f(x) =07 is first determined

in the present study. To this end, the im-

for the curve that passes through all nodes, x,,x,,---,x,,
on 0Q . Subsequently, the vector equation x=x(s) of
0Q is determined by numerically solving the following

ordinary differential equation:
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where R(6) denotes a tensor representing a rotation
through an angle €. By using the resulting vector equation
of 0Q, contour integrals can be evaluated without cells.
Next, for the purpose of approximating u(s) and g(s) on
0Q), the periodic shape functions are introduced by means
of the moving least-squares approximation and, subse-
quently, both u(s) and ¢(s) are assumed to be contained in
the functional space spanned by the shape functions.
By means of the above two techniques, eq. (1) and its
associated boundary condition can be discretized to a linear

system. Throughout the present study, the above method is
called a Boundary Node Method Without Cells (BNMWC).

iii) Numerical Results

As an example problem, we adopt the 2-D Laplace prob-
lem over Q={(x,y):(x/2)*+y’ <1} with the Dirichlet
condition: # = cosh x sin y + cos x sinh y on 0Q . In order to
compare the accuracy of the BNMWC with that of the BEM,
the relative errors between the numerical and the analytic
solutions are calculated as a function of N and are depicted
in Fig. 1. We see from this figure that, for both methods, the
relative errors are almost proportional to N “ and that the
power indices «'s satisfy a=12, =20 and a~34
for the linear BEM, the quadratic BEM and the BNMWC,
respectively. This result means that the accuracy of the
BNMWC is much higher than that of the BEM.

Consequently, we might conclude that the BNMWC is a
powerful method for solving a potential problem.
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Fig. 1. Dependence of the relative error on the number
N of the nodes. Here, \/ : the lincar BEM (m=2), A :
the quadratic BEM (m=3), <>: the BNMWC (m=2).
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