
 
 
1. Introduction 

The finite element method (FEM) and the boundary 
element method (BEM) have been applied to various fields 
in fusion engineering and plasma physics and, consequently, 
they have produced a number of fruitful results. Before 
using a numerical code based on the FEM/BEM, a region 
must be divided into a set of elements.  

For the purpose of resolving these difficulties, many 
types of meshless methods have been so far proposed1, 2). 
However, all of them have been plagued by an inherent 
demerit that originates from the implementation method of 
essential boundary conditions. For example, the Lagrange 
multiplier method and the penalty method are adopted as 
the implementation method in the Element-Free Galerkin 
(EFG) method1) and the Meshless Local Petrov-Galerkin 
(MLPG) method2), respectively.  

The purpose of the present study is to propose a new 
implementation method of elementary boundary conditions 
and to numerically investigate the performance of the 
proposed method. 
 
2. Novel Meshless Method 

For simplicity, we consider the following 2D Poisson 
problem on the domain �  bounded by a simple closed 
curve �� :  
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where D�  and N�  are parts of ��  such that 
D N� �� � ��  and D N �� �� � . In addition, n denotes 

an outward unit normal on .��  Furthermore, the 
superposed bar indicates prescribed boundary values and 

( )p x  is a given function on .�  As is well known, both 
the 2D Poisson equation and the natural boundary condition 
are satisfied if and only if the following weak form is 
fulfilled: 
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Although the essential boundary condition is included in 
the weak form of the EFG and the MPLG, it is not included 
in the above weak form.  
    In the present study, the above weak form and the 
essential boundary condition are discretized separately. 

First, the test function w(x) and the trial function u(x) are 
assumed as  

1 2 1 2span( , , , ),  span( , , , )N Nw u� � � � � �� �� � . 
In addition, the function space on D�  is also assumed to 
be 1 2span( , , , )KN N N� . Under the above assumptions, 
the discretized form of the Poisson problem can be written 
in the form, 
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Especially when the test and trial functions are chosen such 
that i i� ��  ( 1, 2, , )i N� � , (2) coincides with the matrix 
equation for the EFG method1). Also, for the case with 

( ) ( )p pN s s s�� �  ( 1, 2, , )p K� � , C and D can be 
calculated analytically. Moreover, the essential boundary 
condition is exactly fulfilled for this case. In the following, 
the meshless method with ( ) ( )p pN s s s�� �  
( 1, 2, , )p K� �  are called the collocation meshless 
method. 
 
3. Performance Evaluation of Proposed Meshless Method 

On the basis of the collocation meshless method, a 
numerical code has been developed for solving the 2D 
Poisson problem. By means of the code, we have 
investigated the performance of the collocation meshless 
method. The results of computations show that, from the 
standpoint of the accuracy, the collocation meshless 
method is superior to the standard one (see Fig.1). 
 

 
 
Fig. 1.  The relative error � as functions of the number N 
of nodes. Here, the Poisson problem is solved by means of 
either the standard EFG or the collocation EFG. 
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