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The interaction between toroidal Alfvén eigenmode (TAE) and energetic ions in the Large Helical Device
(LHD) is investigated using a reduced version of the MEGA code that implements a realistic equilibrium magnetic
field with the HINT code and corresponding TAE profile with the AE3D code. In simulations, the linear growth
rate of TAE amplitude is proportional to energetic ion density; consequently, the nonlinear saturation level of the
TAE amplitude is enhanced by the increase in the energetic ion density. Energy transfer analysis is performed to
clarify destabilization and saturation mechanisms of the TAE and to identify resonant energetic ions. An analysis
of test particles in the electromagnetic field perturbed by the TAE shows that the magnitude of fluctuations in the
energetic ion orbits is proportional to the square root of the TAE amplitude. Our results qualitatively reproduce
the radial transport of energetic ions by the TAE in the LHD.
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1. Introduction
To achieve magnetic confinement fusion, the interac-

tion between Alfvén eigenmodes and energetic ions is an
important issue to be resolved [1]. In the Large Helical De-
vice (LHD), which is a stellarator, bursts of toroidal Alfvén
eigenmode (TAE) and associated energetic ion transport
and losses have been observed during neutral beam injec-
tion [2]. TAE-induced energetic ion transport has been in-
vestigated in axisymmetric systems such as tokamaks [3],
but that in stellarators relies on an analogy with tokamaks
and is not yet fully described. In this paper, we approach
this problem using a reduced version of the MEGA code
[4–6]. In this code, data from the HINT code [7, 8], which
solves the resistive magnetohydrodynamic (MHD) equa-
tions, is used to obtain the realistic equilibrium magnetic
field in the LHD. The TAE spatial profile in the equilib-
rium field is given by the AE3D code [9], which solves
the reduced MHD equations for stellarators [9–11]. The
energetic ion orbits in the superposition of the equilibrium
and perturbed fields are calculated by the particle-in-cell
method with the so-called δ f method [12]. Using the code,
the time evolution of the TAE amplitude and the conse-
quent energetic ion transport in the LHD are simulated.

This paper is organized as follows. In §2 and §3, we
briefly introduce the simulation model. In §4, the linear
growth rate of the TAE and the nonlinear saturation level
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of the TAE amplitude are surveyed. In §5, the magnitude
of the fluctuation in energetic ion orbits due to the TAE is
investigated by test particle analysis. Finally, a summary is
presented in §6.

2. Data from HINT and AE3D Codes
The HINT code and AE3D code employ the Boozer

coordinates (ρψ, ϑ, ζ) are employed, where ρψ ∝ √ψt is the
normalized minor radial position, ψt is the toroidal mag-
netic flux, ϑ is the effective poloidal angle, and ζ is the ef-
fective toroidal angle. In the MEGA code, data described
by the Boozer coordinates are converted to the cylindrical
coordinates (R, φ, Z), where R is the major radial position,
φ is the toroidal angle, and Z is the vertical position.

Figure 1 shows (a) the poloidal cross section of the
equilibrium magnetic field in the LHD at different toroidal
angles, φ = 0 [rad] and φ = π/10 [rad], and (b) the radial
profile of the rotational transform. In the LHD, helically
wound coils have a pole number (symmetry number in the
poloidal direction) of l = 2 and a pitch number (symmetry
number in the toroidal direction) of M = 10. The average
minor radius is approximately a = 60 [cm]. Because the
AE3D code requires a nested magnetic surface, the VMEC
code [13] is also used to construct the nested equilibrium
magnetic field which is comparable to that in Fig. 1.

Figure 2 shows the Alfvén continua of the n = 1
mode family calculated by AE3D. Many eigenmodes are
observed in Fig. 2, but we focus on the TAE with n = 1
and m = 0, 1, 2, and 3 for the reduced simulation, which
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Fig. 1 Equilibrium magnetic field in LHD calculated by the
HINT code: (a) Poincaré plots of equilibrium magnetic
field at toroidal angles φ = 0 [rad] and φ = π/10 [rad] and
(b) radial profile of rotational transform in the Boozer co-
ordinates.

Fig. 2 Alfvén continua of n = 1 mode family calculated by
AE3D.

corresponds to the slowly changing bold curves, where n
is the toroidal mode number and m is the poloidal mode
number.

Figure 3 shows the radial profile of the electrostatic
potential of the TAE for modes with frequencies of (a)
51.3 [kHz] and (b) 71.5 [kHz]. In both modes, (m, n) =
(1, 1) and (m, n) = (2, 1) are dominant. Those modes are
located inside the continuum gap owing to the toroidal cou-
pling of the (1, 1) and (2, 1) modes. In AE3D, the boundary
condition with the perfect conductor is used [9]; that is, the
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Fig. 3 Radial profile of the electrostatic potential of TAE cal-
culated by AE3D for modes with frequencies of (a)
51.3 [kHz] and (b) 71.5 [kHz].

electrostatic potential perturbation is zero at ρψ = 1, which
might give rise to rapid radial decay of 51.3 [kHz] (1, 1)
mode at the edge boundary.

The rotation frequency of the shear Alfvén wave is
given by ωm,n = ±k‖m,nvA, where k‖m,n = (1/R0)(mι − n) is
the parallel wave number, R0 is the major radial position of
the magnetic axis, vA is the Alfvén velocity, and the sign
indicates the direction of propagation. The resonance con-
dition, ω1,1 = −ω2,1 determines the center of the gap as
ι = 2/3 at the radial position of ρψ = 0.65 [see Fig. 1 (b)],
which is close to the peaks of the eigenfunctions in Fig. 3.
Around ρψ = 0.65, a gap in the eigenfrequency forms,
where the frequencies at the lower and upper accumulation
points are 49.5 [kHz] and 72.0 [kHz], respectively.

3. Simulation Model
The nonlinear energetic ion dynamics are determined

by the electromagnetic field, which is the sum of the equi-
librium field and TAE perturbation. The energetic ions are
represented by marker particles, and the electromagnetic
field at the particle position is given by the particle-in-cell
method with linear interpolation.

The time evolution of the guiding center velocity of
energetic ions, ugc, is determined by the drift-kinetic ve-
locity model in Ref. [14], which is the summation of the
modified parallel velocity (partially including the curvature
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drift velocity), E×B drift velocity, curvature drift velocity,
and ∇B drift velocity:

ugc = u
∗
‖ + u

∗
E + u

∗
c + u

∗
B

=
v‖B
B∗‖

b +
1
B∗‖

E × b +
ρ‖v‖B

B∗‖
∇ × b

− μ

qepB∗‖
∇B × b. (1)

The original velocity parallel to the magnetic field line, v‖,
obeys the evolution equation:

mep
dv‖
dt
=

B∗

B∗‖
·
(
qepE − μ∇B

)
, (2)

where E is the electric field, b is the unit vector of the
magnetic field, B is the magnitude of the magnetic field,
B∗‖ = B(1 + ρ‖b · ∇ × b) is the magnitude of the effec-
tive parallel magnetic field, ρ‖ = mepv‖/qepB is the par-
allel Larmor radius, μ = mepv

2⊥/2B2 is the magnetic mo-
ment, mep is the energetic ion mass, qep is the charge, and
v⊥ is the perpendicular velocity. The equilibrium ener-
getic ion distribution function f0 is modeled by coupling
the Gaussian, and slowing-down distributions [15] such
that f0 ∝ exp (−ρ2

ψ/δρ
2
ψ)/(v

3 + v3c)erfc((v − v0)/δv), where
v is the absolute value of the energetic ion velocity and
the complementary error function is defined as erfc (s) =
(1/
√
π)
∫ ∞

s
exp
(
−t2
)

dt, where s is arbitrary. In the simu-
lations, we choose δρψ = 0.4, vc/vA = 0.5, v0/vA = 1.18,
and δv/vA = 0.1. The numerical factor of f0 is specified
when we choose the energetic ion density at the plasma
center. The initial distribution of the pitch angle parameter
λ = v‖/v is assumed to be isotropic in v‖ − v⊥ space, where

v =
√
v2‖ + v

2⊥.

The electric field and the magnetic field perturbed by
the TAE are given by E = Ec + Es = −∇⊥ (Φs +Φc)
and B = B0 + ∇ × [(A‖s + A‖c

)
b
]
, respectively, where

B0 is the equilibrium magnetic field given by the HINT
code. The sine and cosine components of the electro-
static potential perturbation and the parallel vector poten-
tial perturbation are modeled by Φs = X

∑
m,n φm,n sinΘ,

Φc = Y
∑

m,n φm,n cosΘ, A‖s = X
∑

m,n a‖m,n sinΘ, and Ac =

Y
∑

m,n a‖m,n cosΘ, respectively, whereΘ = mϑ−nζ−ωt, ω
is the eigenfrequency given by AE3D, {φm,n, a‖m,n} are the
eigenfunctions given by AE3D, and {X,Y} are the time-
dependent amplitudes. The rate of increase in the ener-
getic ion energy is given by 〈 jep · E〉, where jep is the en-
ergetic ion current due to the curvature drift and ∇B drift,
and the bracket indicates the volume integral. In the δ f
method, the volume integral 〈 jep · E〉 is calculated by sum-
ming each particle’s contribution multiplied by a weight
function [4, 12]. The weight function is defined as the
product of the distribution function perturbation and the
phase-space volume filled by each particle, and the evolu-
tion equation of the weight function is based on the per-
turbed Vlasov equation. The stored energies of the sine

Fig. 4 Contour and isosurface plots of the electrostatic potential
of the TAE by the AE3D code implemented in the MEGA
code (arbitrary units).

and cosine components of the TAE, Ws and Wc, are pro-
portional to X2 and Y2, respectively. Then, the energy con-
servation law yields the following relations

1
X

dX
dt
= − 1

Ws
〈 jep · Es〉, (3)

1
Y

dY
dt
= − 1

Wc
〈 jep · Ec〉. (4)

Figure 4 shows the implementation of the TAE data
by the AE3D code in the MEGA code. An example of a
contour plot of the electrostatic potential of the TAE in the
poloidal plane and isosurface plots are shown. Note that
the rippled structure in Fig. 4 is due to the helically wound
equilibrium magnetic field.

In the following simulations, the number of marker
particles is 6.6 × 105, and the pitch angle parameter λ of
each marker particle in the initial distribution is determined
by a pseudo random number generator.

4. Simulation Results
The plasma parameters for the following simulations

are Beq = 0.5 [T] and neq = 8.9 × 1018 [m−3], where Beq is
the maximum toroidal magnetic field and neq is the maxi-
mum plasma density.

Figure 5 shows the energetic ion density dependence
of the linear growth rate of the TAE for the two modes in
Fig. 3. The linear growth rate is clearly proportional to the
energetic ion density. Earlier analytical work showed that
the linear growth rate of the TAE in stellarators is propor-
tional to the β value of energetic ions [17]. In particular,
the linear dependence of the linear growth rate on the en-
ergetic ion density shown in Eq. (40) in Ref. [17] is con-
sistent with our simulation results. However, the depen-
dence on the temperature is not easily checked because the
leading order of the energetic ion distribution function is
nonMaxwellian. Alternatively, it is confirmed that the lin-
ear growth rate is a monotonically increasing function of
the maximum velocity close to the value of v0 and is not
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Fig. 5 Dependence of the linear growth rate of the TAE on the
energetic ion density at the plasma center.

eq
eq

eq

Fig. 6 Time evolution of TAE amplitude with different values
of the energetic ion density at the plasma center: (a) 3 ×
1017 [m−3], (b) 4 × 1017 [m−3], and (c) 5 × 1017 [m−3].

sensitive to the values of vc and δv.
Figure 6 shows the time evolution of the TAE ampli-

tude, where the maximum amplitude of the magnetic field
due to the TAE perturbation is represented by BTAE. In
the early phase, exponential growth of the mode amplitude
is observed. The TAE growth enters the nonlinear phase

Fig. 7 Parallel energetic ion velocity spectrum of energy transfer
from energetic ions to the low frequency TAE (mode1)
in the (a) linearly growing regime and (b) nonlinearly
growing regime, corresponding to Fig. 6(c), where E0 =

85.1 [J] is a normalization parameter.

when the mode amplitude becomes sufficiently large. The
saturation amplitude increases monotonically with the en-
ergetic ion density. The oscillatory behavior of the mode
amplitude in the saturation phase is due to particle trap-
ping by the TAE, which interrupts the energy exchange
among particles and waves, giving rise to the saturation of
the mode growth [16]. In fact, the oscillation of the mode
amplitude in the saturation phase in Fig. 6 has a time scale
on the order of 1 [ms], which is of the same order as the
linear growth rate of the TAE. After the first nonlinear sat-
uration, the mode growth gradually continues. It is also
confirmed that the TAE frequency does not vary by more
than the linear growth rate of the TAE, which is consistent
with the constraints imposed by the constant mode struc-
ture and equilibrium. In other words, the mode growth rate
is much smaller than the mode frequency; thus, the feed-
back to the mode frequency is negligible.

To identify resonant energetic ions, which drive the
linear and nonlinear growth of the TAE, we analyze the
energy transfer process. Considering Eqs. (3) and (4), the
energy transfer from energetic ions to the TAE is given by
− ∫ dt〈 jep · (Es + Ec)〉.

Figure 7 shows the parallel energetic ion velocity
spectrum of energy transfer to the low-frequency TAE
(mode1), where regimes L and N correspond to those in
Fig. 6 (c). In the linear (L) regime, energetic ions with a
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Fig. 8 Parallel energetic ion velocity and magnetic moment
spectrum of energy transfer from energetic ions to the
low-frequency TAE (mode 1) in the (a) linear growth
regime and (b) nonlinear growth regime, corresponding
to Fig. 6(c), where the energy is normalized by E0 =

85.1 [J].

parallel velocity close to v‖ = 0.6 [vA] drive the linear
growth of the TAE. In the nonlinear (N) regime, the en-
ergy transfer around v‖ = 0.6 [vA] tends to be cancelled
out, which might be due to particle trapping caused by the
TAE-induced electric field. However, energetic ions with a
parallel velocity close to v‖ = 0.3 [vA] and 0.8 [vA] newly
drive the nonlinear growth of the TAE.

Figure 8 shows the parallel energetic ion velocity and
magnetic moment spectrum of energy transfer to the low-
frequency TAE in regimes L and N. Figures 8 (a) and (b)
correspond to Figs. 7 (a) and (b), respectively. Figure 8 in-
dicates that the resonance parallel velocity depends on the
magnetic moment.

Figures 7 and 8 clarify that the gradual growth of the
TAE in the nonlinear regime is caused by the shift in the
energy source. The trapping of resonant energetic ions
with the resonant parallel velocity, vres

‖ , implies that the
TAE-induced field is strong enough to deform the orbits of
energetic ions with parallel velocities close to vres

‖ . Then,
the modification of the energetic ion orbit enables the TAE
to access a new energy source and triggers nonlinear in-
stability. However, the mechanism of the access to the new
energy source is not yet fully understood in detail, although
it might be investigated elsewhere. If the inherent damp-
ing of the TAE modes is included in Eqs. (3) and (4), it
will dominate the weak nonlinear instability observed in
our simulation.

TAE/B

TAE/B

Fig. 9 Poincaré plot of test particles in vertically elongated
poloidal planes for (a) BTAE/Beq = 8.9 × 10−4 and (b)
BTAE/Beq = 7.1 × 10−3.

5. Test Particle Analysis
In the following, we perform the test particle analysis

to clarify the energetic ion orbit. The simulation conditions
are as follows: the number of test particle is 102, and the
initial particle velocity is v‖ = v0 = 1.18vA and v⊥ = 0;
only the low-frequency mode (mode 1) is considered, and
the amplitude of the TAE is fixed but the TAE is oscillated
with the linear rotation frequency.

Figures 9 and 10 show Poincaré plots of the test parti-
cles in the vertically elongated plane (φ = kπ/5 [rad] k =
0, 1, 2, ..., 9) and the horizontally elongated poloidal plane
(φ = π/10 + kπ/5 [rad] k = 0, 1, 2, ..., 9), respectively
for different values of the TAE amplitude. The axis of
the equilibrium magnetic field is shown in Figs. 9 (a) and
10 (a). In comparison with Fig. 1 (a), it is observed that the
orbit strongly deviates from the magnetic surface owing to
the curvature drift. Note that the ∇B drift is absent because
only test particles with v⊥ = 0 are used, and the condition
μ = 0 holds in the simulation.

Figure 11 shows the maximum orbit width in both hor-
izontally elongated and vertically elongated planes. The
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TAE/B

TAE/B

Fig. 10 Poincaré plot of test particles in horizontally elongated
poloidal planes for (a) BTAE/Beq = 8.9 × 10−4 and (b)
BTAE/Beq = 7.1 × 10−3.

Fig. 11 TAE amplitude dependence of the maximum orbit width
of test particles in the horizontally elongated and the ver-
tically elongated planes.

maximum orbit width is measured on the interior equato-
rial plane. The orbit width in the horizontally elongated
plane is approximately 1.6 times of that in the vertically
elongated plane. This factor roughly agrees with the as-
pect ratio of the semi-major axis to the semi-minor axis in

the poloidal cross section, ∼ 1.8, which indicates that the
change in the orbit width is due to the toroidal dependence
of the magnetic surface shape.

For our simulation condition, we conclud that the or-
bit width is approximately 10% of the average minor ra-
dius when the TAE amplitude BTAE/Beq is in the range be-
tween 10−3 and 10−2, which is consistent with the results in
Ref. [5], using an axisymmetric equilibrium magnetic field
comparable to that of the LHD. In LHD experiments, the
radial transport of energetic ions sometimes reaches 10%
of the average minor radius [2]. A comparison with ex-
perimental data is necessary to check the validity of our
results; this is left as a future work.

6. Summary
In this study, the interaction between the TAE and en-

ergetic ions in a realistic equilibrium magnetic field in the
LHD was investigated. In the linear growth phase of the
TAE, the linear growth rate is proportional to the energetic
ion density. In the nonlinear simulations, the saturation
level of the TAE amplitude increased with the energetic
ion density. Energy transfer analysis identified the reso-
nant energetic ions, which drive the linear instability, first
saturation, and nonlinear instability of the TAE. A test par-
ticle analysis showed that the magnitude of the fluctuation
of energetic ion orbits is proportional to the square root
of the TAE amplitude. Simulations of more realistic sit-
uations with neutral beam injection and the finite plasma
pressure effect are left as future works.
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