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The energy relaxation process of a spheromak plasma in a flux conserver is investigated by 
means of a three-dimensional magnetohydrodynamic simulation. The resistive decay of an 
initial force-free profile brings the spheromak plasma to an m = l/n = 2 ideal kink unstable 
region. It is found that the energy relaxation takes place in two steps; namely, the relaxation 
consists of two physically distinguished phases, and there exists an intermediate phase in 
between, during which the relaxation becomes inactive temporarily. The first relaxation 
corresponds to the transition from an axially symmetric force-free state to a helically 
symmetric one with an n = 2 crescent magnetic island structure via the helical kink instability. 
The n = 2 helical structure is nonlinearly sustained in the intermediate phase. The helical 
twisting of the flux tube creates a reconnection current in the vicinity of the geometrical axis. 
The second relaxation is triggered by the rapid growth of the n = 1 mode when the 
reconnection current exceeds a critical value. The helical twisting relaxes through magnetic 
reconnection toward an axially symmetric force-free state. It is also found that the poloidal 
flux reduces during the helical twisting in the first relaxation and the generation of the toroidal 
flux occurs through the magnetic reconnection process in the second relaxation. 

I. INTRODUCTION 

The energy relaxation process in a plasma system with 
two different time scales is an attractive topic not only from 
the standpoint of controlled nuclear fusion but also from the 
standpoint of nonlinear plasma physics. For instance, a mag- 
netically confined magnetohydrodynamic (MHD) plasma 
self-organizes to the minimum energy state in the system 
where two physical processes are operative, i.e., driven mag- 
netic reconnection as a fast process and resistive diffusion as 
a slow process.’ Both the topological change of a global 
magnetic confinement configuration and the dissipation of 
an excess free magnetic energy, which can take place only in 
the resistive medium, are brought about by the driven recon- 
nection in a fast time scale comparable to the MHD time 
scale.lP2 The sawtooth oscillation in the tokamak plasma is 
also another relaxation phenomenon in which two phenom- 
ena with different time scales, i.e., the slow ramp-up and the 
fast crash, take place reciprocally.3 

The spheromak configuration is one of the compact tori 
in which the poloidal and toroidal fields are sustained by the 
internal plasma current. It is widely known that the mini- 
mum energy state in the low-beta plasma is the force-free 
state with a constant coefficient, what is called the Taylor 
state.4 The experimentally formed spheromak plasma has a 
configuration very close to the Taylor state.5 If the resistiv- 
ity, however, has a spatial dependence, the current profile is 
modified in the resistive diffusion time scale and thus the 
plasma gradually leaves from the Taylor state. The deviation 
from the minimum energy state makes the system unstable 
and excites a kind of relaxation instability. 

There are two kinds of dangerous instabilities in the 
spheromak plasma. The first one is a global MHD instability 
such as shift or tilt mode which occurs in the free boundary 
case.6*7 These modes are found to be stabilized by confining 

the plasma in the oblate flux conserver.“* The second one is 
a relaxation instability in a flux conserver, which takes place 
as a result of resistive decay of an initial stable profile. The 
stepwise decay of the magnetic field strength was often ob- 
served in the relaxation instability.‘.” From the analysis of 
the experimental data’ and the numerical studies,‘1-‘3 the 
stepwise relaxation is believed to be triggered by the excita- 
tion of the n = 2 ideal kink mode when the stable profile with 
a minimum energy changes to a low-q profile of qcO.5, 
where n is a toroidal mode number and q is the safety factor. 

Sgro et al.” have examined the stepwise relaxation by 
using a two-dimensional transport code for a current peak- 
ing phase and a three-dimensional nonlinear MHD code for 
a dynamical evolution phase. They found that a nonlinear 
saturation state appeared after the excitation of the n = 2 
kink mode and that the axisymmetric force-free state was 
realized again through the experience of this intermediate 
state. Katayama and Katsurai’* and One and Katsurai13 
have also examined the relaxation process in spheromak 
plasmas with a high-q profile and a low-q profile by means of 
the MHD simulation. They introduced several assumptions 
and numerical techniques to obtain a numerically stable so- 
lution, but some of them were not appropriate for an analysis 
of the stepwise relaxation phenomenon. Especially, as will be 
discussed in this paper, it is quite important to describe the 
magnetic reconnection process with a sufficiently high accu- 
racy in the vicinity of the geometrical axis in order to reveal 
the physical process in a self-consistent way. 

In order to improve the numerical accuracy we devel- 
oped a new numerical scheme which relies on the explicit 
finite-difference method with fourth-order accuracy both in 
space and time. I4 This scheme enables us to simulate a phys- 
ical phenomenon over the resistive diffusion time scale with 
a sufficiently high accuracy by reducing to a much lower 
level the accumulation of the numerical error that comes 
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from the finite-difference method. This scheme has succeed- 
ed in describing several nonlinear phenomena in fusion’4”5 
and space plasmas.‘6 

The purpose of this paper is to examine the whole relax- 
ation process from an initial current peaking phase through 
the final force-free state by using the three-dimensional full 
MHD simulation and to clarify the physical mechanism of 
the stepwise relaxation in a spheromak plasma. For this we 
restrict the discussion to the relaxation phenomenon in a 
spheromak plasma with a low-q profile that is considered to 
show the stepwise relaxation as a result of the resistive decay. 
The initial condition and the simulation model are described 
in Sec. II. Section III is devoted to discussions on a new 
physical picture of the stepwise relaxation based on the de- 
tailed analysis of the results obtained from the MHD simula- 
tion and to comparisons with experimental results and other 
numerical simulation results. Finally we give a summary of 
this paper and a brief discussion on the applicability of the 
model in Sec. IV. 

II. SIMULATION MODEL 

We study the relaxation process of a low-beta sphero- 
mak plasma in a flux conserver by making use of three-di- 
mensional MHD simulation. The numerical scheme used for 
simulation relies on the explicit finite-difference method 
with fourth-order accuracy both in space and time.i4 The 
equations to be solved are the resistive, nonlinear MHD 
equations, 

dF 
dt= 

- V*(Fv) - Vp + jXB, (2) 

z = VX (vXB - vj), 

ap 
at= 

-V*(pv) + (y- l)( -pVv+vj*j), (4) 

where 
j = VXB, (5) 

and F( = pv) is the mass flux density, p is the thermal pres- 
sure, p is the matter density, v is the matter velocity, B is the 
magnetic field, j is the current density, 77 is the electrical 
resistivity, and y( = 5/3) is the ratio of specific heats. 

The shape of the flux conserver is assumed to be an ellip- 
soid of revolution with the aspect ratio ofz,,/rf, = 0.6 in the 
cylindrical coordinates (r,r$,z), where the symmetric axis is 
taken to be along the z axis, z,, is the half-length along the z 
axis, and r,, is the radius in the midplane (z = 0). We adopt 
the configuration of the CTCC-I device’ as a simulation 
model. The oblate shape plays a role in protecting the plasma 
from disruptive growing of the external tilt mode.“* The 
simulation domain is implemented on a (75 x 16 X 9 1) point 
grid with fixed separations (Ar,A4,Az) in the cylindrical 
coordinates. The boundary condition to be imposed is such 
that Ban = 0, jXn = 0, and v = 0 on the conducting wall, 
where n is the unit vector normal to the boundary surface. 
Because there are no spatial grids on the boundary surface in 
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general, we impose the boundary condition on the spatial 
grids located one grid space (Ar or Az) inside from the 
boundary surface. This replacement is equivalent to the 
modification of the boundary shape. 

In order to obtain the initial condition we solve two- 
dimensional Grad-Shafranov equation numerically ” by as- 
suming the poloidal current and thermal pressure profiles as 

1(q) = IO*“, (6) 

P($) =PoC (7) 

where 
* = [A - 1c(r,z)]/(& - goI, (8) 

r,b(r,z) is the poloidal flux function, $,, is the value at a mag- 
netic axis, $,, is the value at a plasma-vacuum boundary, 
and a and ,8 are constant parameters. Figure 1 shows the 
contour plots of the poloidal flux function for the case where 
there is 0.1 of the total poloidal flux in the vacuum region 
( +,, /J& = 0.1) , a = 1.1, and p. = 0. The solution is chosen 
so that the magnetic separatrix coincides with the ellipsoidal 
boundary and the safety factor on the magnetic axis qaxis is a 
little larger than 0.5 to keep the system stable against the 
m = l/n = 2 kink instability. Here m and n are the poloidal 
and toroidal mode numbers, respectively. This solution is 
not exactly equal, but very close, to the Taylor state with the 
minimum energy, which is given by setting p. = 0 and 
a = 1.0. 

We consider two types of resistivity with spatially hol- 
low profiles, both of which are described by the following 
relation: 

rl(r,z) = 7” + (rip - 7~)(3-Y~ - x3), (9) 

where X( r,z) is the function satisfying the relation O<X( 1, 
and 7, and vP ( < 7, ) are the values of the resistivity in the 
vacuum region (X = 0) and at the plasma center (X = 1 ), 
respectively. The functional dependence of 7 is determined 
so that the gradient vanishes both in the vacuum region and 
at the plasma center. It is reasonable to assume that the resis- 
tivity has a relatively smaller value in the hot central region 
compared with that in the cold periphery region. The first 
type corresponds to the torus profile case where the function 
X( r,z) is given by.iJ.i+,,, u4 (r,z) is the 4 component of the 
initial current density and j+,,,, is its maximum value]. The 
second type corresponds to the ellipsoid profile case where 

Poloidal flux function $J(v, z) 

FIG. 1. Contour map of the poloidal flux function in the poloidal plane for 
the two-dimensional equilibrium solution when there is 0.1 of the total po- 
loidal flux in the vacuum region ($J& = O.l), cz = 1.1, andp,, = 0. 
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the function X( r,z) is equal to 1 - [ ( r/rfc )2 + (z/z,, )‘I . 
Figure 2 shows the spatial distribution of the resistivity in 
the poloidal plane for the torus profile case (top) and that 
for the ellipsoid profile case (bottom). The resistivity profile 
is fixed to the initial one throughout the simulation run be- 
cause it is very difficult to obtain the resistivity profile corre- 
sponding to the temporal change of the physical parameters. 
The perturbations of the velocity field are assigned by ran- 
dom numbers on each grid point, the maximum amplitude of 
which is equal to 10 - 3 of the average Alfven velocity uAo . 

Ill. SlMULATlON RESULTS 
Four simulation runs are carried out under the assump- 

tion that the plasma pressure is negligibly small (p<B*B) 
and the matter density is spatially uniform. The simulation 
parameters are listed in Table I, where the period and the 
resistivity are normalized by the AlfvCn transit time 
( = rfc hAo ) and rfc uAO, respectively. The simulation run 
starts from the force-free equilibrium of qaxis = 0.524 and is 
terminated after the duration of 1 50tA for case A. The simu- 
lation runs B, C, and D are carried out to examine the de- 
pendence on the spatial profile of the resistivity and the de- 
pendence on the toroidal mode number where the simulation 
data at f = 80t, for case A are used as initial data. We devote 
ourselves to the analysis of the simulation result for case A in 
the following unless otherwise stated. 

A. Stepwise relaxation 

Figure 3 shows the temporal evolutions of the total mag- 
netic energy (solid line), the n = 2 mode amplitudes of the 
magnetic field (dashed line), and the flow velocity (dotted 
line) where these quantities are normalized by their maxi- 

Fksistivity 

FIG. 2. Spatial distributions of the resistivity in the poloidal plane for (a) 
the torus profile case, and (b) the ellipsoid profile case. 

TABLE I. Simulation parameters. The columns of “type” and “mode” 
show the type of resistivity profile defined by E!q. (9) and the toroidal mode 
number excluded from the simulation, respectively. The column of “peri- 
od” represents the simulation period in units of the Alfvin transit time. 

Case VP+ Period B 77” Mode 

A torus o<t< 150 2x 1o-6 IX10e4 no 
B ellipsoid ao<t< 150 2X10-b 1X10-+ no 
C torus SO<t< 150 2x1o-6 1x10-4 n=3 
D torus SO<f< 150 2X10-b 1xlo-4 n=l 

mum values. There are two peaks in the mode curve of the 
flow velocity while there is one trapezoidal hill in the mode 
curve of the magnetic field. The energy relaxation takes 
place stepwise at the periods corresponding to the peaks of 
the n = 2 flow mode. Let us analyze the stepwise relaxation 
phenomenon by separating the temporal evolution into four 
typical phases, i.e., the linear phase, the first relaxation 
phase, the nonlinear saturation phase, and the second relaxa- 
tion phase. Both the n = 2 flow mode and the n = 2 magnet- 
ic field mode grow with the same growth rate in the linear 
phase where the mode amplitude of the perturbed field is 
much smaller than the unperturbed magnetic field 
(23t, < t < 80t, ). In the first relaxation phase the growth 
curve of the n = 2 flow mode attains the first peak and the 
resultant deformation of the equilibrium profile leads to rap- 
id dissipation of the magnetic energy ( 80t, < t < 1 OOt, ) . In 
the nonlinear saturation phase which follows the first relaxa- 
tion phase, the mass flow energy is relaxed to some lower 
level, while the n = 2 structure of the magnetic field is non- 
linearly sustained ( lOOtA < t < 120t, ) . The n = 2 magnetic 
energy rapidly dissipates and the n = 2 flow mode grows to 
the maximum level in the second relaxation phase 
(12&A <t< l&t,). 

Let us then examine the behaviors of physical quantities 
in the linear phase in detail. Because the resistivity has a 
larger value in the periphery region than that in the central 
region, the resistive diffusion proceeds so that the toroidal 

0.0 
0 50 100 150 

t/tA 

FIG. 3. Temporal evolutions of the total magnetic energy (solid line), the 
n = 2 mode amplitudes of the magnetic field (dashed line), and the flow 
velocity (dotted line) for case A where these quantities are normalized by 
their maximum values. 
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current concentrates in the vicinity of the magnetic axis. The the periphery region. In this process the hot core plasma is 
peaking of the toroidal current results directly in the de- carried from the central region to the cold periphery region 
crease of the safety factor. Figure 4 shows the temporal evo- with a relatively large resistivity. This movement results in 
lutions of qaxir (solid line), and the mode amplitudes of the rapid dissipation of the magnetic energy in the first relaxa- 
n = 1 mode (dashed line), the n = 2 mode (dotted line), tion phase. The dynamical deformation is stopped because 
and the n = 3 mode (dot-dashed line) where the mode am- the n = 2 flow mode ceases to grow and decays to some low- 
plitude is plotted in the logarithmic scale attached to the left er level at this stage. On the other hand, the n = 2 helical 
vertical axis, while the safety factor is plotted in a linear scale structure of the magnetic field shown in Fig. 5 is quasista- 
attached to the right vertical axis. The value of qaxis de- tionarily sustained for a duration of about 2Ot,. This corre- 
creases monotonously with time until it reaches the mini- sponds to the fact that the n = 2 mode of the magnetic field 
mum value Of qaxiJ = 0.438 at tz 79t,. The magnetic config- keeps its amplitude almost unchanged in the nonlinear phase 
uration changes in the resistive diffusion time scale (see Fig. 3 ) . As soon as the second relaxation starts, a new 
determined by the vacuum resistivity in the linear phase. magnetic axis appears in the chaotic region (t = 12Ot, ). 
Notice in Fig. 4 that the n = 2 mode starts to grow soon after This is because the high-m modes in the chaotic region dissi- 
q,;xis decreases below 0.5, while both the n = 1 mode and the pates rapidly and the low-m structure appears. While in- 
n = 3 mode remain almost unchanged. This indicates the creasing the area of the new well-organized magnetic sur- 
fact that the m = l/n = 2 ideal kink instability is triggered face, the magnetic axis moves toward the axially symmetric 
at the period (tz 23t, ) when the field configuration satisfies position. This implies that the n = 2 mode of the magnetic 
the condition q( r,z) < 0.5 everywhere.” The growth rate of field decays at this stage. In this way the axisymmetric pro- 
the kink instability is estimated to be nearly equal to 0.13/t, file is realized again in the plasma after the stepwise relaxa- 
from the inclination of the growth curve. tion. 

The safety factor qaia begins to increase after it reaches 
the minimum value (t>80t, ). The growth rate of the kink 
mode becomes smaller as the system approaches the nonlin- 
ear state. Let us examine the behavior of the n = 2 mode in 
the nonlinear phase. The Poincare plots of magnetic field 
lines on the poloidal plane (4 = 0) are displayed in Fig. 5 at 
six different times where six panels correspond to the Poin- 
care plots at t = 0, got,, lo%,, 115t,, 12Ot,, and 135t,, 
respectively. The m = l/n = 2 plasma flow created by the 
instability gradually modifies the magnetic surface so that 
the location of the magnetic axis is helically shifted from the 
axially symmetric point (t = 9Ot, ). The magnetic islands 
appear around the magnetic axis as a result of nonlinear 
mode coupling. Further deformation leads to overlapping of 
the magnetic islands which changes the ordered magnetic 
structure with nicely nested magnetic surfaces to the chaotic 
one (t = 105t, ). The remaining magnetic surfaces tend to 
deform into crescent shapes as the magnetic axis approaches 

The second relaxation is followed by the topological 
change of the magnetic field from the n = 2 helical configu- 
ration to the axisymmetric configuration. The topological 
change is completed by the operation of magnetic reconnec- 
tion in the MHD plasma. In order to clarify the transition 
mechanism, let us examine the three-dimensional structure 
of the magnetic field line. Figure 6 shows three-dimensional 
display of the magnetic field line at t = 0 (left top), t = 9Ot, 
(left bottom), t = lOOtA (right top), and t = 135t, (right 
bottom). The initial axisymmetric configuration is gradual- 
ly deformed by the growth of the m = l/n = 2 helical kink 
mode (t = 9Ot, ). The deformation proceeds in such a way 
that the flux tube is helically twisted as a whole (t = lOOt, 1. 
The helical twisting concentrates the magnetic flux in the 
vicinity of the geometrical axis (r = 0). Because the magnet- 
ic field on one side of the twisted tube contacts obliquely with 
that on the opposite side at the geometrical axis, the recon- 
nection current along the z axis is formed at the contact 
point. Figure 7 shows the temporal evolution of the radial 
distribution of the current density where the height along the 
vertical axis represents the value of the current density along 
the - z axis ( -jZ ). The current profile is not so largely 
changed from the equilibrium profile during the linear phase 
of the kink instability (t<80t, ) . The negative current is ob- 
served to form and grow in the vicinity of the geometrical 
axis as the helical twisting becomes tighter in the nonlinear 
phase. The absolute value of the current density at the geo- 
metrical axis becomes maximum at t z 12Ot,. It is worthy to 
note that this period coincides with the time when the second 
relaxation starts. In other words, the second relaxation starts 
when the reconnection current created by the helical twist- 
ing of the flux tube becomes larger than a critical value. The 
critical value may be determined by the equation where the 
reconnection rate is balanced with the formation rate of the 
reconnection current. ‘* The reconnection process of the 
magnetic field lines brings the system to an axisymmetric 
state, as was seen in the right-bottom panel of Fig. 6. It is 
concluded that the second relaxation is the transition from 

0 20 40 60 80 100 
+A 

FIG. 4. Temporal evolutions of q..,$ (solid line), and the mode amplitudes 
of the n = 1 mode (dashed line), the n = 2 mode (dotted line), and the 
n = 3 mode (dot-dashed line) for case A where the mode amplitude is plot- 
ted in the logarithmic scale attached to the left vertical axis, while the safety 
factor is plotted in a linear scale attached to the right vertical axis. 
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0.5- 
t/tA = 0 o.s- t/tA = 115 

* . . .i . . 

*. * 
-O.S- -0.5- 

. . 

I t ,,,I I,,, 
0.0 0.5 I.0 0.0 0.5 I .o 

R R 

o.s- 

2 o.o- 

-0.5- 

I- 

O*S- 
t/tA = 135 

-- II .* . . 

FIG. 5. The Poincark plots of magnetic field on the poloidal plane (4 = 0) at six different times for case A where six panels correspond to the Poincark plots at 
t = 0,9Or,, lOStA, lIStA, 120t,, and 135t,, respectively. 
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4 FIG. 6. Three-dimensional display of 
the magnetic field line at t = 0 (left top), 
I = 9Of, (left bottom), t = lOOr, (right 
top), and t = 1324 (right bottom) for 
case A. 

the n = 2 helical state to the axisymmetric state through the 
driven magnetic reconnection.’ 

According to Taylor’s hypothesis4 the minimum energy 
state is the force-free state with a spatially uniform coeffi- 
cient il [ E (j*B)/( B-B) 1. From this standpoint let us exam- 
ine the behavior of the spatial distribution of the coefficient il 
in the relaxation process. Figure 8 shows the perspective 
diagrams of the distribution of ;Z in the (r,z) plane at t = 0, 
t = 8Or,, t = 120t,, and t = ISOt, for case A where the 
height along the vertical axis normal to the (r,z) plane repre- 
sents the value of/z averaged over the toroidal angle, and 
both the distributions in the vicinity of the geometrical axis 
(left side of each panel) and near the boundary surface are 
excluded from the figure for clarity. The initial distribution 
is approximately spatially flat except the periphery region, 
i.e., this profile is very close to the force-free one with mini- 
mum energy. As time elapses, the spatial distribution with a 

FIG. 7. Temporal evolution of the radial distribution of the current density There are two mechanisms that can lead to a decrease in 
for case A where the height along the vertical axis represents the value ofthe the total poloidal flux. The first one is the resistive dissipa- 
current density along the - raxis ( -j,). tion. The poloidal field is distributed with a peak at an inter- 
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peak in the plasma center is gradually formed in accordance 
with the current peaking (t = 8Ot, ) . The nonlinear growth 
of the kink instability smooths out the peaked distribution 
and thus a spatially flat distribution is realized at t = 12Ot,. 
That is, the kink instability plays a role to adjust the devi- 
ation of the magnetic profile created by the resistive process 
to the force-free one with a minimum energy. Because the 
resistivity is fixed to be spatially hollow, the peaked distribu- 
tion grows up again after the second relaxation takes place 
(t = ISOt,). 

B. Flux conversion 
As was shown above, the relaxation mechanism in the 

second relaxation phase is quite different from that in the 
first relaxation phase. The temporal behaviors of the toroidal 
magnetic flux and the poloidal magnetic flux exhibit a typi- 
cal difference between the first and the second relaxation. 
Figure 9 shows (a) the temporal evolutions of the total toroi- 
da1 flux (solid line) and the total poloidal flux (dotted line), 
and (b) that of the ratio of the negative toroidal flux to the 
total toroidal flux where the flux curves are drawn in a nor- 
malized unit. The total poloidal flux begins to decrease just 
after the first relaxation starts (t > 8Of, ), while the total 
toroidal flux remains almost constant until the second relax- 
ation starts (t > 12Of, ). The negative toroidal flux grows in 
the nonlinear saturation phase (8Ot, < t < 120t, ) and dissi- 
pates rapidly as soon as the system comes into the second 
relaxation phase. Both of the growth curves become flat after 
the second relaxation. A similar resuh was derived for the 
low-q simulation carried out by Katayama and Katsurai.” 
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t/tA = 120 FIG. 8. Perspective diagrams of/t in the 
( r,z) plane at t = 0, t = Sot,, t = 12Or, , 
and t = 150t, for case A where the 
height along the vertical axis normal to 
the ( r,z) plane represents the value of/z 
averaged over the toroidal angle. 

t/tA = 80 

I--------- Poloidal flux 
1.0 

-___-__ 

0.0 
0 50 100 150 

TIME 

0.06 Negative toroidal flux 
Total toroidal flux 

0.0 
0 50 100 150 

TIME 

FIG. 9. Temporal evolutions of (a) the total toroidal flux (solid line) and 
the total poloidal flux (dotted line), and (b) the ratio of the negative toroi- 
dal flux to the total toroidal flux, where the flux curves are drawn in a nor- 
malized unit. 

mediate plasma region while the toroidal field is distributed 
with a peak at the magnetic axis. Since the resistivity has a 
hollow profile, the plasma movement toward the conducting 
wall in the first relaxation leads mainly to resistive dissipa- 
tion of the poloidal field. The second mechanism is the con- 
version of the poloidal flux to the toroidal flux via magnetic 
reconnection. 

Let us consider the conversion mechanism by using the 
schematic model illustrated in Fig. 10. Suppose that two po- 
loidal flux tubes which are located symmetrically around the 
z axis are forced to deform by the n = 2 helical twisting (top 
panel). The helical twist force lays down the poloidal flux 
tubes on the plane perpendicular to the z axis in such a way 
that the directions of the magnetic field lines across the z axis~ 
become opposite to each other. This process corresponds to 
the first relaxation. Since the lying tubes do not have any 
poloidal flux, the total poloidal flux decreases as a conse- 
quence of the helical twisting in the first relaxation. The ly- 
ing tubes form a reconnection current along the - z axis, as 
is seen in the middle panel of Fig. 10. It is important to note 
that the negative toroidal field appears in the vicinity of thez 
axis while a net amount of the toroidal flux is unchanged at 
this stage. This can explain the simulation result that the 
total toroidal flux remains almost constant until the second 
relaxation starts in spite of the increase of the negative toroi- 
da1 flux (see Fig. 9). In the second relaxation phase magnet- 
ic reconnection takes place at the z axis and it combines two 
lying flux tubes into one toroidal flux tube that has a net 
toroidal flux. This process leads not only to elimination of 
the negative toroidal flux component, but also to the increase 
of the total amount of the toroidal flux. In this way the beha- 
viors of the poloidal flux and the toroidal flux can be ex- 
plained without any inconsistency by this simple model illus- 
trated in Fig. 10. Thus, it is concluded that the flux 
conversion of the poloidal flux to the toroidal flux is realized 
through successive operations of two processes, i.e., helical 
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First Relaxation 
Z 

Second Relaxation 
Z 

FIG. 10. Schematic diagram of flux conversion mechanism. ( 1) Two poloi- 
da1 flux tubes are located symmetrically around the z axis. In the first relax- 
ation the n = 2 helical twisting lays down the poloidal flux tubes on the 
plane perpendicular to the z axis. (2) The reconnection current along the 
negative z axis is formed and the poloidal flux becomes zero. The toroidal 
field appears locally, but a net amount of the toroidal flux is zero at this 
stage. Magnetic reconnection takes place at the z axis in the second relaxa- 
tion. (3) Consequently, two lying flux tubes are combined into one toroidal 
flux tube which has a net toroidal flux. 

twisting in the first relaxation phase and magnetic reconnec- 
tion in the second relaxation phase. 

C. Resistivity profile 
We have carried out the simulation run by assuming 

that the resistivity profile is independent of time for case A. 
It is natural to expect that the spatial profile of the resistivity 
is largely altered in the nonlinear phase because the flow 
created by the kink instability carries the hot plasma in the 
central region to the periphery region. This change may af- 
fect the behaviors of the physical quantities in the relaxation 
process. In order to check this effect we carry out another 
simulation run in which the resistivity with an ellipsoid pro- 
file is used [see Fig. 2 (b) 1. The parameters are listed in case 
B of Table I. Note that the resistivity profile in the vicinity of 
the geometrical axis is most significantly changed from that 
for case A. This simulation starts from the simulation data at 
t = 8Or, for case A and is terminated at I = 15Of,. The re- 
sults are displayed in Fig. 11 where the solid, dashed, and 
dotted lines represent the temporal evolutions of the total 

0.5 - 

0 50 100 150 
t/t* 

FIG. 11. Same figure as Fig. 3 for case B where the resistivity with an ellip- 
soid profile is used. 

energy, the n = 2 mode amplitude of the magnetic field, and 
that of the flow velocity, respectively. Let us compare the 
results with those shown in Fig. 3. Because the kink instabil- 
ity is an ideal process caused only by the spatial structure of 
the magnetic field, the first relaxation is hardly affected by 
the change of the resistivity profile. The duration of the non- 
linear saturation phase becomes longer and the start of the 
second relaxation is delayed. Recall the fact that the second 
relaxation starts when the reconnection current created by 
the helical twisting becomes larger than a critical value. This 
indicates that the formation of the reconnection current in 
the vicinity of the geometrical axis is the resistive process and 
thus more time is necessary for the reconnection current to 
grow to the critical value for case B. 

D. Dependence on the toroidal mode 
The reconnection process plays a key role on the transi- 

tion from the helically symmetric state to the axially sym- 
metric state in the second relaxation phase. Incidentally we 
observe that the n = 1 and n = 3 modes grow rapidly near 
the geometrical axis just before the second relaxation starts. 
The same phenomenon was observed in the CTCC-I experi- 
ment.’ In order to clarify the relation between the reconnec- 
tion process and these modes we carry out two simulation 
runs, i.e., case C where the n = 3 mode is excluded from the 
simulation and case D where the n = 1 mode is excluded 
from the simulation. Though the simulation code used is not 
the Fourier code, we carry out the Fourier transformation of 
the simulation data once every ten time steps ( ~0.041, ) 
and reset the amplitude of the assigned mode equal to zero. 
These simulation runs start with the data at c = 80t, for case 
A. Figure 12 shows the temporal evolution of the kinetic 
energy for case A (solid line ) , case C (dotted line ) , and case 
D (dashed line) where the amplitude is normalized by the 
maximum value of all. The kinetic energy in the first relaxa- 
tion phase evolves in the same way for three cases. This is due 
to the fact that the first relaxation is caused by the growth of 
then = 2 ideal kink mode and the n = 1 and n = 3 modes do 
not play any role on the first relaxation phenomenon, as was 
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FIG. 12. Temporal evolutions of the kinetic energy for case A (solid line), 
case C (dotted line), and case D (dashed line) where the amplitude is nor- 
malized by the maximum value of all. 

seen in Fig. 4. On the other hand, the second relaxation re- 
veals a quite different feature, i.e., there is not any clear peak 
of the kinetic energy for case D while the kinetic energy for 
case C behaves in the same way as for case A. In other words, 
there is not any clear period corresponding to the second 
relaxation phase in the simulation run without the n = 1 
mode. This suggests that the existence of the n = 1 mode is 
necessary for the complete performance oft he second relax- 
ation which is controlled by magnetic reconnection. 

Figure 13 shows the temporal evolution of the current 
density at the geometrical axis for the same cases as Fig. 12. 
The reconnection current increases gradually as a result of 
the helical twisting of the flux tube in the nonlinear satura- 
tion phase ( lOOt, < t < 120t, ). For cases A and C we can 
observe evidence that the second relaxation starts at the peri- 
od (t = 120t, ) when the reconnection current reaches a 
critical value. The energy stored in the twisted flux tube is 
released through magnetic reconnection and it forms the 
second peak of the kinetic energy, as was seen in Fig. 12. 
Consequently, the current density at the geometrical axis 
decreases as the second relaxation proceeds 
(120t, 

10 

h” :: 0 

5, 
g - 10 

i - 20 
$ 
e- - 30 

< t < 14Ot, ). On the other hand, the reconnection 

60 80 100 120 140 
TIME 

FIG. 13. Temporal evolution of the current density at the geometrical axis 
for the same cases as Fig. 12. 

FIG. 14. Temporal evolution of the force-free parameter ,I,, for case C 
where three panels show the perspective views of /2, in the upper half 
(z> 0) of the poloidal cross section at t = 80t, (top), t = 12Ot, (middle), 
and t = ISOr, (bottom), respectively. 

current for case D continues to increase after it reaches a 
critical value for cases A and C. That is, neither the decrease 
of the current density at the geometrical axis nor the rapid 
growth of the kinetic energy showing the efficient operation 
of magnetic reconnection appear for the simulation run 
without the n = 1 mode. 

Let us consider the role of the n = 1 mode on the mag- 
netic reconnection process in the second relaxation. First, 
recall the mathematical condition that each component of a 
vector has the structure described by only a toroidal mode at 
the geometrical axis in the cylindrical coordinates, i.e., the 
axial component has then = 0 structure while the radial and 
azimuthal components have the n = 1 structure. The n = 2 
helical twisting does not lead to the formation of the magnet- 
ic held or the current density with the n = 1 structure be- 
cause of its n = 2 symmetry. Thus, both the magnetic geld 
and the current density have only an axial component with 
the n = 0 structure on the axis. In other words, the profile 
satisfying the force-free condition J X B = 0 is formed at the 
geometrical axis as a result of the helical twisting. Figure 14 
shows the temporal evolution of the force-free parameter ;1, 
for case C where three panels show the perspective views of 
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the parameter il, ( =J.B/jJIJBI) in the upper half (z> 0) of 
the poloidal cross section at I = 8Ot, (top), t = IZOt, (mid- 
dle), and t = 15Ot, (bottom), respectively. Though the 
whole system is slowly modified from the initial equilibrium, 
the magnetic field continues to have a configuration very 
close to the force-free one of & = 1 during the linear phase 
(top). The helical twisting of the flux tube in the nonlinear 
phase creates another force-free configuration of /2, = - 1 
in the vicinity of the geometrical axis (middle). It is impor- 
tant to note that two different force-free states exist in the 
nonlinear phase simultaneously. The force-free state of 
R, = - 1 disappears after the second relaxation phase (bot- 
tom). This phenomenon corresponds to the disappearance 
of the reconnection current sustaining the reversed field. 
There are two processes through which the current profile is 
changed in the MHD plasma, i.e., the diffusion process and 
the reconnection process. The diffusion of the magnetic field 
takes place in a resistive time scale that is much longer than 
an MHD time scale. In the reconnection process the magnet- 
ic flux is carried away from the reconnection point by the 
dynamical flow created by the JXB force and hence the 
current profile is changed in the short time scale comparable 
to the MHD time scale. The intermediate state of 
I> /2, > - 1, in which the relation JxB # 0 holds, is re- 
quired for the transition from the R, = - 1 state to the 
/2, = 1 state in a short time scale. It is clear that the n = 1 
mode is necessary to describe the l/2,] # 1 state at the geo- 
metrical axis. Therefore it is concluded that the existence of 
an n = 1 mode with a sufficiently large amplitude is indis- 
pensable for the complete performance of magnetic recon- 
nection in the second relaxation. The n = 3 mode grows as a 
result of the nonlinear coupling between then = 1 mode and 
the n = 2 mode, but this mode does not play any essential 
role in the reconnection process. These conclusions are quite 
different from the results of the numerical simulation carried 
out by Sgro et al.” or that done by Ono and Katsurai.13 

IV. SUMMARY AND DISCUSSIONS 
We have examined the whole relaxation process of a 

spheromak plasma in a flux conserver from an initial current 
peaking phase through the final force-free state by making 
use of the three-dimensional full MHD simulation and have 
clarified the physical mechanism of the stepwise relaxation. 
The main results are summarized as follows. 

( 1) The current peaking near the magnetic axis pro- 
ceeds in the resistive time scale due to the hollow resistivity 
profile. When an initial force-free profile changes to a low-q 
profile of q < 0.5, the stepwise relaxation of the magnetic 
energy is triggered by excitation of the m = l/n = 2 ideal 
kink mode. The stepwise relaxation consists of four temporal 
phases, i.e., the linear phase, the first relaxation phase, the 
nonlinear saturation phase, and the second relaxation phase. 

(2) In the linear phase both then = 2 flow mode and the 
n = 2 magnetic field mode created by the helical kink insta- 
bility grow with the same rate, which is nearly equal to 
0.13/t,. As the amplitude of the n = 2 kink mode increases, 
the magnetic flux tube is helically deformed in a way that one 
would twist a candy wrapper. The flow created by the helical 

kink instability carries the hot plasma in the central region to 
the periphery region with a relatively large resistivity. There- 
fore, this movement results in a rapid dissipation of magnetic 
energy in the first relaxation phase. 

(3) The n = 2 helical structure is nonlinearly sustained 
for a while after the growth of the helical kink instability is 
stopped. The magnetic island surrounding the magnetic axis 
is deformed in a fairly crescent shape. The helical twisting of 
the flux tube forms the reconnection current at the contact 
point which is located on the geometrical axis. The recon- 
nection current develops gradually to create a reversed toroi- 
da1 field near the geometrical axis. This period corresponds 
to the nonlinear saturation phase. 

(4) When the reconnection current becomes larger than 
a critical value, magnetic reconnection takes place at the 
geometrical axis and the dynamical flow created by the J x B 
force carries away the reconnected magnetic flux from the 
reconnection point. Consequently, the helical twisting is re- 
laxed and the axially symmetric force-free state is realized 
again in the plasma. This is the second relaxation. This pro- 
cess requires the existence of an n = 1 mode with a suffi- 
ciently large amplitude. 

(5) The flux conversion from the poloidal flux to the 
toroidal flux is realized through the two processes of helical 
twisting in the first relaxation and magnetic reconnection in 
the second relaxation. 

(6) The resistivity dependence of the relaxation phe- 
nomena is also examined by changing the spatial distribu- 
tion of the resistivity. It is found that the duration of the 
nonlinear saturation phase becomes longer and the start of 
the second relaxation is delayed when the simulation is car- 
ried out for the resistivity profile with a smaller value near 
the geometrical axis. 

In this paper we made several assumptions to examine 
the whole process of the stepwise relaxation by the three- 
dimensional full MHD simulation code with a fourth-order 
accuracy. Before concluding this paper, let us discuss the 
plausibility of these assumptions. 

The resistivity profile was assumed to be independent of 
time. The resistivity plays three important roles on the step- 
wise relaxation. The first role is to change the stable force- 
free configuration to an unstable configuration against the 
kink mode through the peaking of the current profile. The 
second one is to cause the rapid dissipation of magnetic ener- 
gy in the first relaxation phase. These phenomena are caused 
essentially by the hollow spatial profile in which the resistiv- 
ity at the periphery is larger than that in the center region. 
The third role is to change magnetic topology through mag- 
netic reconnection. The reconnection rate is almost indepen- 
dent of the absolute value of the resistivity for the driven 
reconnection.2*‘8 However, the formation speed of the re- 
connection current in the nonlinear saturation phase de- 
pends on the resistivity near the geometrical axis, as was seen 
in Sec. III C. Therefore, it is plausible that the temporal 
change of the resistivity profile exerts influence on the phe- 
nomena in the nonlinear saturation phase. This result is con- 
sidered to correspond to the experimental fact that the satu- 
ration of the n = 2 mode was not observed in the late phase 
of the discharge.’ 
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We started the simulation from an equilibrium profile 
that was close to the critical profile of qais = 0.5. The pur- 
pose of this paper is to examine the whole process of the 
stepwise relaxation in the system with two different time 
scales, i.e., the MHD time scale and the resistive diffusion 
time scale, by means of the full MHD simulation code. For 
this we need to carry out the simulation over a large number 
of time steps, Especially, the initial current peaking phase 
and the growing phase of a perturbation from a numerical 
noise level to a nonlinear level are the major parts. Because 
the accumulation of numerical error increases in proportion 
to the number of time steps, the total number of time steps 
should be kept less than a permissible value. The number of 
time steps needed to obtain physically reliable simulation 
data is restricted within several tens of thousands when the 
MHD simulation code with fourth-order accuracy is used. 
The physical period of ISOt, corresponds to about 40 000 
time steps for the case of the MHD simulation code used in 
this paper. There are two ways to reduce the number of time 
steps without losing the reliability. The first way is to make 
the value of resistivity larger and to contract the difference 
between the resistive time scale and the MHD time scale. 
This method sometimes makes it impossible to identify a 
physical process controlling the phenomenon among var- 
ious processes with different time scales. Thus, we did not 
use this method. Instead, we relied on the second way in 
which we exclude part of the natural phenomena, which is 
not essential to clarify the physical process, from the simula- 
tion and shorten the physical time of the simulation. In the 
real experiment’ the initia1 qaxis is close to 0.6. However, 
based on our premise that the current peaking phase from 
qaxis = 0.6 to qaxis = 0.5 must be controlled by the same 
mechanism as that from qaxis = 0.524 to qaxls = 0.5, we 
adopted the initial equilibrium protile with qanis = 0.524 
rather than 0.6. 
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