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Solitary radial electric field structure in tokamak plasmas
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The solitary structure solution of the radial electric fieldEr in the tokamak plasmas is obtained. It
is shown to be stable under an external power supply, like a biased electrode at the edge. The radial
gradient is governed by the ion viscosity and the nonlinearlity of the perpendicular conductivity.
The radial structure ofEr and reduction of turbulent transport, which belong to key issues of the
high confinement mode~H-Mode! @F. Wagneret al., Phys. Rev. Lett.49, 1408 ~1982!#, are
self-consistently determined. A bifurcation from a radially-uniform one to a solitary one occurs at
a certain applied voltage, and a hysteresis is associated. ©1998 American Institute of Physics.
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The finding of the high-confinement mode~H-mode! in
tokamak plasmas1 is one of the first experimental demonstr
tions of the structural transition in confined plasmas, wh
are in the far-nonequilibrium state. An electric field bifurc
tion has been proposed for the mechanism of the H-m
transition,2 and the important role of the structure of the r
dial electric field Er on the plasma confinement is no
widely recognized~see review, e.g., Refs. 3, 4.! Related to
the electric field, the impact on the micro turbulence h
been investigated most intensively.5–7 The interface between
the regions with different electric polarity was discussed3,8

and spatio-temporal evolution ofEr in the case of improved
confinements has attracted attention, e.g., Refs. 9, 10.
experiment has been done by use of the biased electrode
the plasma periphery,11 to study the turbulent suppressio
and the nonlinear relation between the radial current andEr .
The data constitutes a basis to understand the plasma no
earlity that induces the electric field bifurcation. Several
tempts at analysis have been done,12 but the physics mecha
nism that determines the gradient ofEr is left unresolved
there.

In this article, we study the spatial structure of the rad
electric field in the presence of the radial current across
magnetic field. It is found that there exists a solution of t
solitary structure ofEr . The gradient and its impacts on th
turbulence suppression are self-consistently determined.
ion viscosity, coupled with the nonlinearity in the perpe
dicular conductivity, governs the gradient of the radial ele
tric field. It is shown that the bifurcation ofEr takes place
from a radially-homogeneous one to the solitary structure
a threshold voltage imposed on the electrode.

The charge conservation relation combined with
Poisson’s relation governsEr as (]/]t)Er52(1/e0e')
3(Jr

NET2Jext), whereJr
NET is the net radial current in the

plasma,Jext is the current that is driven into the electrode
the external circuit,e0 is the vacuum susceptibility, ande' is
a dielectric constant of the magnetized plasma.~The effect of
4121070-664X/98/5(12)/4121/3/$15.00
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ion polarization current is kept ine' , because we are inter
ested in a time change that is much slower than the
cyclotron frequency.! The radial current is composed of tw
components,Jr

NET5Jr2e0e'“•m i“Er . The first termJr is
the ‘‘local current,’’ which is determined by the radial ele
tric field at the same radial location. The second is caused
the shear viscosity of ions,m i , and includes the diffusion
operator.3 Note that the evaluation ofe' , is performed by
solving the Newton equation for the toroidal plasmas~see,
e.g., Refs. 3, 12–14!. The equation ofEr in a stationary state
is a nonlinear diffusion equation, as

“•m i“Er2
1

e0e'

~Jr2Jext!50. ~1!

The local currentJr and Er is related through the perpen
dicular conductivity,Jr5s(Er)Er . In this article, we study
the case that the neoclassical current12 is dominant inJr .
This is because we are interested in the situation that
plasma is away from the condition that may allow sponta
ous bifurcations, for which the contribution of other mech
nisms toJr is known to be important.3 ~Associated with this
simplification, the diamagnetic velocity and neoclassical p
loidal velocity are neglected.! We are interested in the ver
steep gradient ofEr . Compared to the structure ofEr , the
other plasma parameters are slowly varying in space, so
the other plasma parameters are treated as constant for
plicity.

First, we study the case that the ion viscositym i is con-
stant. The dependence of the conductivity onEr is symboli-
cally written ass(Er)[s(0) f (X), whereEr is normalized
as X5erpEr /T (rp : ion poloidal gyroradius,T: ion tem-
perature!. The neoclassical theory has givenf (X)
.exp(2X2) in the collisionless limit and f (X).1/(n

*
2

1X2) in a collisional case.12 The essential thing is thatf (X)
satisfies the relationsf (0)51 and X f(X)→0 as uXu→`.
For this analytic study, we consider the radially-thin sh
structure, and introduce the normalization in space and
1 © 1998 American Institute of Physics
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rent density asx5(r 2r 0)/ l and I 5(erp /Ts(0))Jext ,
wherel 5Am i /s(0). ~The radiusr 0 is chosen at the middle
between two electrodes.! Then Eq.~1! is rewritten as

]2

]x2 X2 f ~X!X1I 50. ~2!

The solitary solution of the electric field, which has cylind
cal symmetry, is searched for. The solution is much m
localized than the distance between the two magnetic
faces, on which the electrodes are located. The boun
condition is chosen as]X/]x→0 ~i.e., X→X1! at uxu→`.
We choosex50 at the surface of the symmetry.

The stationary solution is obtained. Equation~2! has a
trivial solution, which is constant in space, asX5X1 , where
X1 is the solution of the equationf (X1)X15I. @The equation
f (X)X5I has two solutions,X1 andX2 . X1 is chosen by the
conditionuX1u,uX2u.# Besides this trivial solution, there is
nontrivial solution with the solitary radial electric field
Equation ~2! is integrated as 221(dX/dx)25*X1

X X f(X)dX

2IX1const[F(X). Function F(X) takes the minimum a
X5X1 and the maximum atX5X2 , respectively, and is a
decreasing function ofX in the region ofX.X2 . The inte-
gral constant is chosen asF(X1)50, to satisfy the boundary
condition atuxu→`. The solutionX(x) is given as

x5EX

$2F~X!%21/2dX. ~3!

This solution gives the solitary structure of the radial elec
field.

The solution is studied near the critical current,I .I * ,
where the local currentX f(X) takes the maximum with re
spect toX at X5X* . ExpandingF(X) in the vicinity of I
.I * as F(X)5C$(X* 2X1)(X2X1)22(X2X1)3/3%1¯ ,
we have the solution as

X~x!5X* 13a223a2S eaCx21

eaCx11D 2

, ~4!

where a[C21/4(I * 2I )1/4 and C5(21/2)(]2/]X2)
3@X f(X)#X5X

*
. The peak height scales as (I * 2I )1/2 and

the width scales like (I * 2I )21/4.
To study the voltage–current relation quantitatively,

us take a model fromf (X)512X2/3X
*
2 (uXu,)X* ) and

f (X)50(uXu.)X* ). This model keeps an essential featu
of the conductivity, i.e.,f gradually becomes smaller ifuXu is
small, andf !1 holds in the largeuXu limit. This form of f
provides an exact analytic solution for the solitary rad
electric field structure. Figure 1 illustrates the solitary so
tion in the case ofX1 /X* 50.6. By performing the integra
V5*2d/2

d/2 X(x)dx, the voltage difference between the ele
trodes is calculated.~d is a distance between the electrod!
In the asymptotic limity1d@1, one has explicit relations
V54A6@p/22arctan(y1

21(A12X1
2/3X

*
2 1&X1 /)X* ))#X*

1X1d for the case of X* /),X1,X* , and V
5 (4&/3)Cm

3/2X
*
3 I 22 1 2A2Cm()X* 2 X1)X* I 2 114A6

3@p/22arctan(C2y1/21X1 /)X* y1)#X* 1X1d for X1

,X* /). Here, coefficients are given asy15A12X1
2X

*
22,

C25(c21Ac3)(12X1 /)X* )21, Cm5c3()2X1 /X* )2/
8, c2[2(11X1 /)X* )(122X1 /)X* )(12X1

2X22)21,

*
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and c3[2(11X1 /)X* )(12)X1 /X* )(12X1
2X

*
22)21.

Figure 2 illustrates theV– I curve in the case ofd520. The
voltage differenceV is rewritten asV5Vpeak1X1d, where
Vpeak is due to the deviation of the solitary solution from th
constant one. For the trivial solution,X5X1 , the voltage
difference is given byV5X1d.

The solitary structure is characterized by the peak va
of the radial electric fieldX(0) and the radial widthD. In the
small I limit, asymptotic forms hold generally asX(0)
}X

*
2 I 21, D}X* /I , and Vpeak.X

*
3 I 22. In the case ofI

.I * , it is explicitly calculated asVpeak512C25/4(I *
2I )1/41¯ .

The bifurcation is described by the voltage–current re
tion. TheV– I curve is a multi-valued function, as is show
in Fig. 2. For a fixed value of current, two solutions ofV are
given. For a fixed value ofV, one, or three solutions ofI are
available. In the experimental condition, the external circu
are often composed of the power supply ofVext and the
internal resistance. Then the applied voltage between
electrodeV and the current densityI is constrained asV
5Vext2 r̂ i I ~the coefficientr̂ i is proportional to the interna
resistance!, as is shown by the solid~or dashed! lines in Fig.
2. The cross-points of theV– I curve and the constraintsV
5Vext2 r̂ i I give the solutions. In the cases of high and lo

FIG. 1. Solitary structure of the radial electric field. Model formf (X) is
taken as f (X)512X2/3X

*
2 (uXu,)X* ) and f (X)50(uXu.)X* ). The

parameter isX1 /X* 50.6 (I /I * 50.792). The dotted line shows the trivia
solutionX5X1 .

FIG. 2. The relation between the voltageV and the currentI for the solitary
structure ofEr ~thick solid line! and that of the homogeneousEr ~thick
dashed line!. A constraint by the external circuit,V5Vext2 r̂ i I , as is shown
by the thin lines. Bifurcation to the solitary structure takes place atA8, and
the back transition occurs atC8.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Vext ~thin solid lines!, solutions are given byA or C and are
stable. Bifurcation from the constant one to the solita
structure takes place atA8, and the back transition occurs
C8. When three roots are given~a thin dashed–dotted line!,
the second solutionB is unstable. We see a hysteresis of t
electric field structure as a function of the voltage in t
power supply. Depending on the characteristics of the ex
nal circuit, this system also shows the limit cycle oscillatio
The details will be reported in a separate article.

Finally, the influence of the radial electric field inhom
geneity on the ion viscosity is investigated. The shear visc
ity of ions has two origins: one is the collisional transpo
mc , and the other is the turbulent transport,mN . The turbu-
lent transport could depend on the electric field gradient,
the ratio uvEl /gdecu is the key parameter, wherevE1

5(dEr /dr)B21 andgdec is the nonlinear decorrelation rat
of the fluctuations that cause the turbulent transport.5–7 Ana-
lytic formulas have been derived asmN5mN(0)(1
1vE1

2 /gdec
2 )21 ~when uvE1 /gdecu is small! and mN

}mN(0)uvE1 /gdecu2n ~whenuvE1 /gdecu is large,n,1!. We
chose, as an interpolation formula,mN5mN(0)(11(2/n)
3(vE1 /gdec)

2)2n/2. The explicit form of the coefficient
gdec is given in, e.g., Ref. 3. Introducing normalized coef
cients as H1[(eT/gdecBlrp)2, m i0[m i(X→0)5mN(X
→0)1mc , and h[mN(X→0)/m i0 , we rewrite as m i

5m i0$12h1h(11(2/n)H1(dX/dx)2)2n/2%. Lengthl is de-
fined asl 5Am i0 /s(0). Equation~2! is integrated as

hn

4H1
H 1

12n/2
1

12n

12n/2 S 11
2H1

n S dX

dxD 2D 12n/2

22S 11
2H1

n S dX

dxD 2D 2n/2J 1
1

2
~12h!S dX

dxD 2

5F~X!.

~5!

Equation~5! provides a self-consistent solution forEr

and turbulence suppression. The peak value ofX,X(0), is
not modified, because it is determined by the relat
F(X(0))50. The solution also has the same asympto
form at uxu.D. The coupling with the suppression of th
turbulent transport makes the solitary structure ofEr more
peaked, but does not change the qualitative nature. If
coefficientH1 is small, (2/n)H1X

*
2 !1, the solutionX(x) is

unaltered from Eq.~3!, and the maximum suppression fact
is given asmN /mN(0).(11H1X

*
2 )21. In an intermediate

range, 1!(2/n)H1X
*
2 !((12n)/(12n/2))2/nh2/n(1

2h)122/n, the maximum of the gradient is estimated asX8
.(X

*
2 (12n/2)/(12n))1/(22n)(2H1 /n)n/(422n), and the

maximum suppression factor is given asmN /mN(0)
.(2H1X

*
2 (12n/2)/n(12n))2n/(22n). In the case of large

coefficient H1 , ((12n)/(12n/2))2/nh2/n(12h)122/n

!(2/n)H1X
*
2 , the left hand side of Eq.~5! is approximated

as 221(12h)(dX/x)2: The maximum of the gradient is ap
proximately given asX8.(12h)21/2X* . The maximum
suppression factor is given as mN /mN(0).(1
2h)22/n(2H1X

*
2 /n)2n/2, satisfying the relationmN,(1

2n/2)(12n)21mc . The anomalous transport coefficient
reduced to the level of collisional one and the moment
transport barrier is locally formed.
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In summary, the solitary-ring structure of the radial ele
tric field in the tokamak plasmas is obtained. The stable s
tary structure is sustained by the external steady power
ply. The radial structure and the suppression of the turbu
transport are self-consistently obtained. Comparisons of
theoretical results~e.g., bifurcation condition and radia
shape ofEr! with experimental observations allow us
evaluate fundamental parameters, such as of the nonli
Jr –Er relation, ion viscosity, or decorrelation rate of fluctu
tions.

In this article, several simplifications are made due
analytic transparency. The pressure-driven radial curren
the limit of Er50 and the neutral particle effects are n
glected. In addition, the turbulent transport can affectJr , and
Jr ~anomalous! depends onEr as well asEr8 ~see Ref. 3 and
references therein!. The influence of such an effect is consi
ered in relation with improved confinement.10 The Er8 term
could appear in Eq.~2!, and a radially-moving solitary struc
ture ofEr is allowed.@If we have a term likeaX8 in Eq. ~2!,
then the solution is given asX(x2at) wheret5t/tN and
tN5e0e' /s(0). It has avelocity a.# The solution of Eq.~2!
also includes the one in which multiple solitary structures
confined between the electrodes. These corrections
variations will be reported in a separate article.
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