§7. Secondary Electron Emission from SrCeO₃(5% Yb) Thin Film on Si

Matsunami, N. Kondoh, J. (Dept. Energy Eng. and Sci. Nagoya Univ.), Hosaka, K., Tawara, H.

We have measured the secondary electron emission (SEE) yield γ_e from an epitaxial thin film(~100 nm) of 5% Yb doped SrCeO₃ (SCO) on Si by ion impact, using a cylindrical cup with a shield surrounding the cup. Positive bias was applied to the cup, and the sample and the shield were grounded.

For impact of 100 keV H^+ ion, whose calculated projected range (570 nm) is much longer than the film thickness, γ_e is found to be nearly constant over a wide range of the ion beam current (I_B) up to a few nA and starts to decrease for larger I_B as shown in Fig. 1. A peculiar or explosive increase of γ_e was often observed for large IB. Excluding the peculiar behavior, the IB dependence of γ_{e} is similar to that for high Tc superconductor oxides such as polycrystalline (p-) YBa₂Cu₃O₇ [1] but is guite different from the strong I_B dependent γ_e observed for p-SCO [2]. I_B independence of γ_e indicates zero surface potential and no charge accumulation at both the surface and the SCO-Si interface. If this is the case, γ_e should reach a constant with increasing the cup bias voltage. However, no saturation of γ_e at IB independent region, e.g., $I_B = 0.1 nA$, was seen with increasing the cup bias voltage up to 90 V, implying non-zero surface potential.

For impact of 20 keV Ar⁺ ion, whose calculated projected range (16 nm) is much shorter than the film thickness, γ_e is found to decrease with I_B (Fig. 2). A possible explanation is that the surface potential exceeds the cup bias voltage due to charge accumulation carried by Ar^+ and holes generated by SEE, resulting in the reduction of γ_e .

Negative and positive ion emissions are under investigation. We would like to thank Prof. M. Ishigame and Dr. N. Sata for supplying SCO films and for their helpful discussions.

Fig. 1 SEE yield (γ_e) from SCO on Si by 100 keV H⁺ ion impact at the cup bias of 0, +45 and +90 V.

Fig. 2 SEE yield from SCO on Si by 20 keV Ar⁺ ion impact at the cup bias of 0 to 180 V.

References

 N. Matsunami, S. Majima and T. Kawamura, Nucl. Instrum. Meth. B135(1998)450.
K. Hosaka, N. Matsunami and H. Tawara, Nucl. Instrum. Meth. B149 (1999)414.