§2. Deuterium Density Retained in Low-Activation Ferritic Steel under Low-Energy Deuterium-plasma Exposure

Matsunami, N. (Meijo Univ.), Ohno, N. (Nagoya Univ.), Kato, M. (Nagoya Univ.), Nagasaka, T., Tokitani, M., Masuzaki, S., Ashikawa, N., Sagara, A., Nishimura, K.

Low-activation ferritic steel, e.g., JLF1 [1] is a candidate for structure material in nuclear fusion devices. Hence, deuterium (D)-density retained in the steel is important for designing the devices. We have measured D-density in JLF1 under low-energy D-plasma exposure.

Mechanically polished JLF1 is exposed to deuterium-plasma generated by AC glow discharge of 1.5 KV in 53 Pa D_2 at room temperature, using the same method in [2]. D-plasma consists of $60~\%~D_3^+$ and $40~\%~D_2^+$ (D⁺ can be negligible) [3]. D-density was evaluated employing nuclear reaction, $D(^3He,\alpha)P$, analysis (NRA) with normal incidence and NRA angle of 160° measured from the incident beam direction. For analysis of D-density, JLF1 is treated as Fe, as in the case of stainless steel (SUS).

Figure 1 shows NRA spectra for D-plasma exposure time of 50 min (D fluence of ~2x10¹⁸ cm⁻²), obtained using 1.0 and 0.7 MeV ³He⁺ beams. Peaks around 1.6 and 1.9 MeV are α-particles from D located near the surface of JLF1. It appears that for 0.7 MeV ³He⁺, majority of D's (1.4x10¹⁶ cm⁻²) are retained within the depth of 0.2 µm (comparable with the depth resolution of 0.21 µm corresponding to the solidstate-detector resolution of 25 keV). If these D's are assumed to be uniformly distributed in the depth of 0.2 μm , N_D/N_{Fe} yields to 0.8 %. Here N_D and N_{Fe} are D-density and Fe density (N_{Fe}=8.48x10²² cm⁻³). Ddensity was obtained with the calculated relation between the energy of α -particle and depth, as shown in Fig. 2 and it is noticed that the relation is not single-value function for 1.0 MeV ³He⁺. D-density is shown in the Fig. 1 inset and one sees that D-density is ~ 0.1 % for the depth of 0.2-0.6 μ m and ~ 0.2 % in the deeper region. The results imply that D's migrate from the deeper region towards surface and a certain amount of D's is trapped very near surface, and it is more likely that some D's escape from the surface, because the total amount of D's and D-density near surface region decrease after D-plasma exposure. It also appears that D-density in unpolished JLF1 is larger by a factor of 1.5 than that in polished JLF1. Measurements of D-distribution in SUS, dynamic retention of D in JLF1 and SUS, and thermal desorption of D are under way.

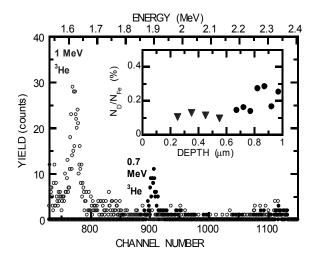


Fig. 1 NRA spectra of α -particles for JLF1. D-density vs depth (inset) obtained by 0.7 MeV 3 He (\blacktriangle) and 1 MeV 3 He(\bullet).

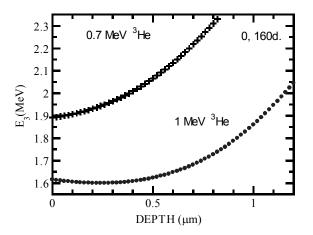


Fig. 2 Calculate energy of α -particle vs depth for 0.7 MeV 3 He (\blacktriangle) and 1 MeV 3 He(\bullet) in Fe.

- T. Nagasaka, Y. Hishinuma, T. Muroga, Y. Li, H. Watanabe, H. Tanigawa, H. Sakasegawa, M. Ando, Fusion, Eng. Design, 86(2011)2581.
- N. Matsunami, T. Sogawa, Y. Sakuma, N. Ohno, M. Tokitani, S. Masuzaki, Phys. Scr. T415(2011) 014042.
- H. Sugai, H. Kojima, T. Mori, S. Aoki, T. Okuda,
 J. Nucl. Mater. 128/129(1984)169.