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Measuring organization quantitatively has been the
subject of various studies in spite of the inherent difficul-
ties to characterize complex systems in an accurate man-
ner. The method presented here ), is based on a para-
metric model for a wavelet tree distribution attributing
hidden Markov (HM) variable to each node of the tree.
The wavelet tree is considered as a self-organizing system
by identifying hidden states of the wavelet coefficients
with local causal states. The wavelet decomposition of
the real-world data is sparse so that most of the energy is
compacted into small number of large coefficients, which
we call yang, while the remaining large number of small
ones we label as yin. While the yang coefficients provide
information on singularities, the yin coeflicients carry in-
formation on smooth characteristics of the data.

i) Statistical self-organization We perceive the
wavelet Hidden Markov model (HMM) from the view-
point of self-organization giving the concept of self-
organization specific physical interpretation. First, it
is necessary to define the time axis. The interdepen-
dence of the nodes of the wavelet tree takes place ver-
tically through the tree so we consider the time axis
as dyadic frequency axis directed from the coarsest to
the finest scale. We regard the signal domain as spatial
even for temporal signals because the concept of time
is replacing the frequency domain. Thus, by introduc-
ing diffeomorphism invariance the wavelet tree becomes
the spatio-temporal tree. The direction of time is deter-
mined by the branching process representing information
flow from parent to descendant coefficients. In the con-
text of binary tree structure and the chosen time axis
causality is defined by interdependence of the wavelet
coefficients so it lies solely in the HM structure of the
wavelet tree. Tying in the EM algorithm implies sta-
tistical stationarity (translatory invariance of the distri-
bution) in the spatial domain. As a consequence of the
persistence property causality is defined by the presence
or absence of singularity in the spatial support of the
wavelet coefficients. Recall that the EM algorithm es-
timates parameter vector § by maximizing conditional
expectation. This implies maximization of the incom-
plete likelihood log Py(d) diminished by the conditional
entropy Hy (S|d), i.e. log Py(d)—Hy (S|d). In the course
of maximization the second term is minimized, so we as-
sume that it is close to zero, i.e. Hy (S|d) = 0. It follows
that S|d =f,(d) with probability close to 1. The param-
eter vector 6 is characteristic of the dynamic process but
not of the particular realization d, hence the implication
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Fig. 1:  Entropy rate and complexity pairs
(H(D|S)/(27 —1),H(S)/(27 — 1)) for the logistic map.
Shades correspond to different intervals of parameter r.
Negative entropy values stem from the properties of the
differential entropy.

is that S = fp(D) i.e. the global causal state is statistic
of the wavelet tree. The condition Hy (S|d) =~ 0 defines
the property of approximate unifilarity so we say that
the wavelet HMM tree determines the wavelet machine
or w-machine. The knowledge of S is related to the op-
timal prediction because D in HMM depends on S only.
The entropy of the wavelet tree may be expressed as

H(D)=H(D,S)=H(D|S)+ H(S), (1)

where H(D) and H(D|S) are differential entropies
of continuous random variables. The extensive term
H(D|S) represents irreducible randomness that remains
even after all correlations are subsumed. The addition
of noise increases only this term while complexity H(S)
remains unaltered. The local complexity C; = H(S;)
has a specific physical interpretation: it is higher if the
distribution of the hidden yang an yin states in the node
is more uniform.

ii) Global complexity The local complexity C; =
H(S;) is a measure which guarantees that the informa-
tion contained in the node is optimally preserved. The
global complexity C' = H(S) fulfills that goal for the
complete tree. The higher global complexity means that
the yang states are more uniformly distributed within
the tree allowing for more optimal preservation of the
background information. So, we define the optimal rep-
resentation of the data (signal) as the one which max-
imizes the global complexity of the tree. In Fig. 1 we
present the complexity-entropy rate diagram for the lo-
gistic map.
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