§33．An Automatic Roots Finding Method for Systems of Nonlinear Equations

Watanabe，T．，and Akao，H．，（NEC）

We have developed an algorithm for all solutions to nonlinear systems of equations

$$
\begin{equation*}
0=h_{i}\left(x_{1}, x_{2}, \cdots, x_{n}\right),(i=1,2,, \cdots, n) \tag{1}
\end{equation*}
$$

within a given compact domain $\boldsymbol{D} \in \boldsymbol{R}^{n}$ based on the nu－ merical integration of the δ function（ δ function method）． The δ function method is proved to include the numerical algorithm for root finding problem based on the Cauchy integration theorem of an analytic function of 1 complex variable，and the bisection scheme of 1 real variable．
When we can guess approximate solutions，it is rela－ tively easy to get highly accurate solutions for the non－ linear systems of equations（1）by the Newton iteration scheme．The delta function method is used to get all approximate solutions for eq．（1）with specified accuracy．
The delta function $\delta\left[h_{1}, h_{2}, \cdots, h_{n}\right]$ has the nature

$$
\begin{align*}
I & \equiv \int_{\Omega} \delta\left[h_{1}, h_{2}, \cdots, h_{n}\right] d x_{1} d x_{2} \cdots d x_{n} \\
& = \begin{cases}1 & \text { if } \Omega \text { contains an solution for eq.(1). } \\
0 & \text { if } \Omega \text { contains no solution for eq.(1). }\end{cases} \tag{2}
\end{align*}
$$

The δ function method is developed by the numerical in－ tegration of eq．（2）with following expressions for δ func－ tions．

$$
\begin{gathered}
\delta\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} \nabla^{2} \ln r \text {, case for } n=2 \\
\delta\left(x_{1}, \cdots, x_{n}\right)=-\frac{1}{(n-2) \Omega_{n}} \nabla^{2} \frac{1}{r^{n-2}}, \text { case for } n \geq 3
\end{gathered}
$$

where the distance r ，the surface are Ω_{n} and differential operator ∇^{2} are defined as follows．

$$
\begin{gather*}
\Omega_{n}= \begin{cases}\frac{(2 \pi)^{n / 2}}{(n-2)!!} \\
\frac{2(2 \pi)^{(n-1) / 2}}{(n-2)!!} & \text { if } \mathrm{n} \text { is even. } \\
\text { if is odd. }\end{cases} \tag{3}\\
\nabla^{2}=\sum_{i=1}^{n}\left(\frac{\partial}{\partial x_{i}}\right)^{2}, \quad r=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2} . \tag{4}
\end{gather*}
$$

The δ function method is successfully applied for various types of equations and various number of $n(\leq 7)$ ．

References

［1］渡辺二太，他，京大数理解析研講究録 1040 （1998）p1－8．

Fig． 1 （a）The δ function method is applied to get flat top $(|x|<1)$ distribution function $\mathrm{F}(\mathrm{x})$ by superposition of 4 Gaussian distributions．

$$
F(x)=\sum_{i=0,3} N_{i} \exp \left(-\left(x-V_{i}\right)^{2} T_{i}\right)
$$

7 parameters $N_{i}, V_{i}(i=0,1,2,3)$ are obtained numeri－ cally（ $V_{0}=0$ ）．The synthesized function $F(x)$ and Gaus－ sian function elements are expressed by solid and thin lines．Total 7 sets of solutions are obtained numerically including solutions（a），（b）and（c）．

