§70. Ignition Analyses for the Helical-type Fusion Reactor FFHR-2 with the H-mode Power Threshold

Mitarai, O.(Kyushu Tokai University) Sagara, A., and Motojima, O.

Ignition characteristics in the D-T high field helical reactor, two times bigger than the LHD are analyzed by the "operation path method" on the $P_{ht}\tau_E^2$ -T plane and "POPCON". Machine parameters of R = 8 to 10m, a = 1.0 to 1.3m and $B_0 = 10T$ are considered for the experimental demonstration of the ignited operation in a stellarator reactor. Based on the LHD scaling law, R = 10m, a = 1.0m and the magnetic field around $B_0 = 10T$ in FFHR with force-free helical coil configuration is chosen as a reference one. In this helical reactor, the ignited operation is possible down to the fusion power 1.0 GW and low beta value of about 2.0 % with the high confinement enhancement factor 3 over LHD scaling. The Hmode power threshold observed in W7-X must have a hysteresis effect to maintain the operating point in the ignition regime. While the high magnetic field makes the empirical density limit higher and then the ignited operation regime becomes wider, it makes the H-mode power threshold higher and the ignited operation regime narrower.

Table 1 Machine and plasma parameters for

Compact FFHR. Major radius	
Major radius :	R =10 m
Minor radius :	a = 1 m
External heating power :	$P_{EXT} = 100 \text{ MW}$
Effective plasma volume :	$V_0 = 197 \text{ m}^3$
Effective plasma surface area :	$S_0 = 395 \text{ m}^2$
Enhancement factor over LHD	scaling : $\gamma_{\rm H} = 3.0$
Effective ion charge:	$Z_{eff} = 1.5$
α density fraction: $f_{\alpha}=1$ % for	the start-up phase
$f_{\alpha} = 5 \%$ in t	he ignition regime
Alpha particle heating efficience	y: $\eta_{\alpha} = 0.7$
Reflectivity for synchrotron ·	$R_{\text{off}} = 0.9$

Hole fraction for synchrotron :	$f_{\rm H} = 0.1$
Density profile:	$\alpha_n = 1.0$
Temperature profile:	$\alpha_T = 1.0$

Table 2 Operation	on points	in the	ignition	regime
-------------------	-----------	--------	----------	--------

	The second s	the second se	and the second se			
Toroidal field B ₀	9 T	10	10			
Fusion power P _f	1.0 GW	1.0	1.5			
Neutron power P _n	0.8 GW	0.8	1.2			
Alpha loss $P_{\alpha w}$	58 MW	59	63			
Alpha heating $P_{\alpha p}$	142MW	141	210			
Energy loss :						
Bremsstrhalung Pb	20 MW	20	26.5			
Synchrotron Ps	0.5 MW	16.8	25.5			
Conduction P_L	110 MW	104	156			
Electron density n(0) ($x10^{20}$ m ⁻³)						
	2.93	2.78	3.14			
Temperature T(0)	24.5 keV	26.5	30.3			
Beta value $<\beta>$	2.2 %	1.8	2.3			
Neutron wall loading W_n (MW/m ²)						
	1.85	1.86	2.8			

 $P_{\rm H}[{\rm MW}] > A_{\rm IH} \ \bar{n}[{\rm x10^{20}m^{\text{-}3}}] \ B_0[{\rm T}] \ S_0[{\rm m^2}],$ with $A_{\rm IH}=0.024.$