§10. Development of Superconducting Bus

Mito, T., Yamada, S.

A flexible superconducting bus-line is proposed as an electrical feeder between the superconducting coils of the Large Helical Device (LHD) and the device's power supplies. The bus-line consists of superconducting cables and a cryogenic flexible transfer-line. A specially developed aluminum stabilized NbTi/Cu compacted strand cable satisfies requirements for large current capacity, high stability, high reliability and flexibility. A full-scale model with a length of 20 m was designed and constructed to investigate the feasibility and performance of the superconducting bus-line. Its fabrication, transportation, installation, cooling and excitation tests were successfully carried out.

Fabrication and installation of the full-scale model of the flexible superconducting bus-line were successfully carried out. Most parts of the superconducting bus-line were assembled in the factory. The assembled bus-line was then transported and installed at the experimental site.

The full-scale model was cooled down and excited successfully up to 40 kA without a quench. The measured minimum propagation current was larger than 32.5 kA. Thus, the bus line was fully stabilized at the rated current of 30 kA. A specially developed aluminum stabilized NbTi/Cu compacted strand cable was demonstrated to be sufficiently stable for the bus line. The measured current distribution of the nine-stand cable was quite uniform. The success of the full-scale model shows the feasibility and usefulness of flexible superconducting bus-lines for LHD and in other applications, too.

Fig. 1. Configuration of a flexible superconducting bus-line.

TABLE 1	Specifications	of Bus-Lines	for LHD and
	Full Scale Mod	iel	

		For LHD	Full scale
		(updated design)	model
1.	Rated current	13 kA - 31 kA	30 kA
2.	Breakdown voltage (in	for Poloidal coil	DC 2 kV
	helium gas at 1 atm, 77K)	DC 5 kV	(design)
		for Helical coil	> DC 5 kV
		DC 2 kV	(measured)
3.	Length	45 m - 65 m	20 m
4.	Conductor	Aluminum stabilized NbTi/Cu	
		compacted strand cable	
5.	Minimum bending radius	1.5 m	1.5 m
6.	Transfer-line	Coaxial five-channel	Four-
		with 80K shield	channel
7.	Outer diameter	< 0.25 m	0.22 m
8.	Cooling method	Forced-flow of two-phase helium	
9.	Heat load		
	Liquid helium channel	< 0.2 W/m	< 0.3W/m
	Returning gas channel	< 0.2 W/m	< 3.5 W/m
	80 K shield gas channel	< 3 W/m	-

TABLE 2 Parameters of Superconducting Cable for Bus-Line

	Aluminum Stabilized, Compacted Strand Cable				
1.	Rated current	30 kA at 1 T, 4.2 K			
2.	Critical current	180 kA at 1T, 4.2 K			
3.	Size	17.2 mm × 35.4 mm			
4.	Number of strands	9			
5.	Twist pitch of strands	374 mm			
6.	Electrical Insulation	Polyamide paper (nomex)			
7.	Al sectional area	500 mm ²			
8.	Cooling ratio	13 % of the cable surface			
9.	Minimum propagation	40 kA			
	current				
Superconducting Strand					
1.	Outer diameter	8.95 mm			
2.	NbTi/Cu insert diameter	2.91 mm			
3.	Al:Cu:NbTi ratio	8.4:0.5:0.5			
4.	Twist pitch of filaments	60 mm			
5.	Filament diameter	30 µm			
6.	NbTi/Cu critical current	6000 A/mm ² at 1 T, 4.2 K			
	density				
7.	Al resistivity	$3 \times 10^{-11} \Omega m$ at 1 T, 4.2 K			

References

- Mito, T. et al. "Conceptual design and development of a superconducting bus-line for the Large Helical Device." *Fusion Engineering and Design*, <u>Vol. 20</u>, 1993, pp.113-120.
 Mito, T. et al. "Development and tests of a
- 2) Mito, T. et al. "Development and tests of a flexible superconducting bus-line for the Large Helical Device." Proceedings of MT-13 to be published.