§3. Development of Direct Profile Extrapolation Method

Miyazawa, J., Goto, T., Sakamoto, R., Yamada, H., Sagara, A.

A new method to extrapolate the radial profiles of temperature and density in present devices to a fusion reactor has been developed and named "DPE (Direct Profile Extrapolation)" method.¹⁾ In traditional fusion reactor design activities, radial profiles have been assumed to be, for example, parabolic, while using zerodimensional energy confinement scalings to determine the absolute values.^{2,3)} In the DPE method, radial profiles of temperature and density obtained in the experiment are directly extrapolated to the reactor condition assuming gyro-Bohm type parameter dependence. As was reported in Ref. 4, the gyro-Bohm type parameter dependence is observed not only in the global energy confinement time, but also in the local pressure in LHD. Enhancement factors of the density, f_n , the plasma beta, f_β , the energy confinement, $\gamma_{\!\!\!,}$ and the magnetic field strength, f_B , are also

Fig. 1. Radial profiles in a self-igniting helical reactor extrapolated from typical radial profiles in LHD. Solid lines are the profiles assumed in the design of FFHR-2m2.

assumed to determine how large heating power, P_{reactor} , and the plasma size, a_{reactor} and R_{reactor} , will be needed in the reactor.

Example profiles extrapolated from LHD to the reactor condition without auxiliary heating, i.e., selfignition, are shown in Fig. 1, where $f_n = 2$, $f_\beta = 5$, $\gamma = 1.3$, and $f_B = 1.85$ are assumed. Typical profiles assumed in the FFHR-2m2 design (solid lines in Fig. 1) are well reproduced by using these enhancement factors. Assuming the self-ignition condition, P_{reactor} , a_{reactor} , and R_{reactor} , are determined as a function of f_n , f_β , γ , and f_B . In Fig. 2, $R_{reactor}$ is plotted with respect to the magnetic field strength on the magnetic axis in the reactor, B_{reactor} , to show the design window of a self-ignited fusion reactor. If $B_{\text{reactor}} = 10 \text{ T}$, and $f_n = f_\beta = \gamma = 1.0$, for example, then $R_{reactor}$ should be larger than ~17 m, to achieve the self-ignition condition. And if f_n is increased to 2, then the minimum $R_{reactor}$ is reduced to ~13 m. The lower envelope of the design window with various f_n has a form of

$$R_{\text{reactor}} = C_{\text{exp}} \gamma^{-5/6} f_{\beta}^{-1/3} B_{\text{reactor}}^{-4/3}, \qquad (1)$$

where C_{exp} is a factor depending on the used profiles. The smaller C_{exp} is favorable to decrease the device size and the magnetic field in the reactor. Enhancement in the confinement and/or the plasma beta is also favorable. As was shown in Fig.1, the FFHR-2m2 design of $R_{reactor} = 15.7$ m and $B_{reactor} = 5.1$ T is within the design window if $f_n = 2$, $f_{\beta} = 5$, and $\gamma = 1.3$ are assumed.

- 1) J. Miyazawa, et al., submitted to Fusion Eng. Des.
- 2) A. Sagara, et al., Fusion Eng. Des. 83 (2008) 1690.
- 3) O. Mitarai, et al., Nucl. Fusion 47 (2007) 1411.
- J. Miyazawa, et al., J. Plasma Fusion Res. SERIES, Vol. 9 (2010) 94.

Fig. 2. Example of the reactor design window derived from radial profiles of #96164 (t = 6.966 s). Plasma major radius is plotted as a function of the magnetic field strength.