§11. Atomic Nuclear Charge Scaling for Dielectronic Recombination to Be-like lons

Moribayashi, K. and Kato, T.

Atomic nuclear charge(Z) scaling for dielectronic recombination rate coefficient (α) to Be-like ions as well as energy level (E), radiative transition probability (Ar), and auto-ionization rate (Aa) of Be-like ions are studied. We treat C²⁺, O⁴⁺,Ne⁶⁺, Mg⁸⁺,P¹¹⁺, Ar¹⁴⁺, Ca¹⁶⁺, V¹⁹⁺, Fe²²⁺ ions as Be-like ions and not only 1s²2pnl states but also 1s²3lnl' states as auto-ionization state. For the calculation for E, Ar, Aa, Cowan's code is employed in order to consider electronelectron correlation enough.

The Z-scaling is affected by the electronelectron correlation for small Z and relativistic effect for large Z. Furthermore, different mechanism between the $\Delta n=0$ and $\Delta n \neq 0$ transitions is seen. Here Δn is the different quantum number between the auto-ionization state and the final bound state.

In the Z-scaling for the α values, only the 1s²2pnl \rightarrow 1s²2snl transition dominates at low Z(see Fig.1), on the other hand, at high Z, the transitions through the 1s²3lnl' states also become important (see Fig.2). The α values to the final excited 1s²2snl show weak Z-dependence, on the other hand, those to the 1s²2pnl state have a strong Z-dependence.

Fig.1 Dielectronic recombination rate coefficient α vs. electron temperature Te for Be-like C ion.

Fig.2 The same as Fig.1 for Be-like Fe ion