§5. Optimization of Diagnostic Neutral Beam Operating for the MSE Spectroscopy in CHS

Takayama, S.(Dept. of Fusion Sci. Graduate Univ. for Advanced Studies), Ida, K., Hattori, S. and Kojima, M.

The H_{α} emission from the hydrogen neutral beam injected into a plasma has 15 components (8 lines of π and 7 lines of σ) due to the Motional Stark Effect (MSE). The wavelength shift of the π lines from the σ_{0} line is proportional to the magnitude of Lorentz Electric Field, $\boldsymbol{v} \times \boldsymbol{B}$ ($v:$ beam velocity, B :magnetic field) [1].

The diagnostic neutral beam (DNB) has been installed in the CHS for the MSE measurements. Line broadening caused by a finite beam divergence angle results in overlapping between the adjacent lines. Since S/N ratio is roughly proportional to the beam current, higher beam current and smaller beam divergence angle are desirable for the measurement.

Figure 1 shows the beam divergence angle as a function of the beam current for various acceleration voltages. The optimized beam current, I_{b}, where the beam divergence angle has the minimum value, depends on the acceleration voltage, V_{b}, as $\mathrm{I}_{\mathrm{b}} \propto \mathrm{V}_{\mathrm{b}}{ }^{3 / 2}$. The minimum divergence angle is ~ 0.65 degree and dose not depend on the beam voltage. There are three H_{α} emissions with different Doppler shift depending on the three beam energy components. The H_{α} from full energy component, yielding larger $\boldsymbol{v} \times \boldsymbol{B}$, is used for the measurement. Figure 2 shows the energy ratio as a function of the optimized beam current. The proton ratio (the fraction of full energy component) is $0.4 \sim 0.57$ and increases as the acceleration voltage increases. Therefore, the optimum operations of DNB achieved are $\mathrm{V}_{\mathrm{b}}=45 \mathrm{kV}$ and $\mathrm{I}_{\mathrm{b}}=3.5 \mathrm{~A}$.

Fig. 1 The beam divergence as a function of the beam current for various acceleration voltages

Fig. 2 The energy ratio as a function of the optimized beam current

References

1)D.Wroblewski, K.H.Burrell, L.L.Lao, P.Politzer, W.P.West

Rev.Sci.Instrum. 61 (1990) 3552

