§18. Configuration Effects on Particle Transport in LHD

Tanaka, K., Michael, C.A. (JSPS fellow), Kawahata, K.

The particle transport was investigated using density modulation for three different magnetic configurations, represented by the magnetic axis position in vacuum (R_{ax}) of 3.6, 3.75 and 3.9m [1]. Figure 1 shows the change of the T_e and n_e profiles at three different R_{ax}. The heating power was adjusted to maintain almost identical electron temperature profiles. In a previous study [2], it was found that for constant density, the electron temperature and its gradient are key parameters for controlling particle diffusion and convection respectively. Despite this, as shown in Fig. 1(b), the achieved density profiles are rather different for almost identical T_e profile. The average density is almost the same for $R_{ax} = 3.6$ and 3.75m, but the density profile is more hollow for R_{ax} = 3.75m. The achieved density was lower for $R_{ax} = 3.9 \text{ m}$ compared with other configurations under almost identical particle fuelling.

Figure 2 shows parameter dependence of D and V. The electron temperature and $-\text{grad}\ T_e/T_e$ are averaged over 0.4<p<0.7 for the core and 0.7<p<1.0 for the edge. As shown in Fig.2 (a), (b), positive T_e dependencies are observed in all configurations. For more outward shifted configurations, the diffusion coefficient becomes larger at the same T_e both in the core and edge region The temperature dependence also varies with B_t . Stronger D_{edge} variation with T_e at lower B_t was observed at R_{ax} =3.6m.

A positive dependence of V_{core} on $-grad\ T_e/T_e$ is observed for all configurations as shown in Fig.2(c). As shown in Fig. 1(d), the edge convection velocity is proportional to -grad T_e/T_e at R_{ax} =3.6m and 3.75m, and also reverses direction from inward to outward with increasing -grad T_e/T_e . However, at R_{ax} =3.9m, V_{edge} does not change dramatically. Each graph in Fig. 2 appears to show an offset linear trend, with a different offset for each configuration.

Figure 3 shows comparisons of D and V with neoclassical values and their dependence on the normalized collision frequency (ν^*_h) , which is normalized by the collision frequency of boundary between plateau and $1/\nu$ regime. As ν^*_h is decreased, the experimental D_{core} increases, and the neoclassical value of D_{core} becomes closer to the experimental value as shown in Fig.3 (a). However, the experimental D_{core} is around one order magnitude larger than neoclassical even in the $1/\nu$ regime $(\nu^*_h < 1)$. The difference between the experimental and neoclassical D_{edge} values is larger. For all values of collisonality, the experimental value of D_{edge} is more than one order magnitude larger than the neoclassical one.

As shown in Fig. 3(a), the experimental V_{core} is comparable with neoclassical for all values of v_h^* . Although, at R_{ax} =3.6m, B_t =2.8T, V_{core} from experiments at higher v_h^* is directed inward contrary to neoclassical prediction, which is directed outward. Generally, both

experimental and neoclassical V_{core} almost agree within experimental error.

Reference

- 1) Tanaka, K.,et al., to be published Fusion Science and Technology
- 2) Tanaka, K.,et al., Nucl. Fusion 46 (2006) 110–122

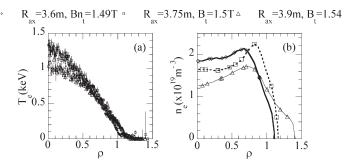


Fig. 1. (a) T_e and (b) n_e profiles of three different configurations

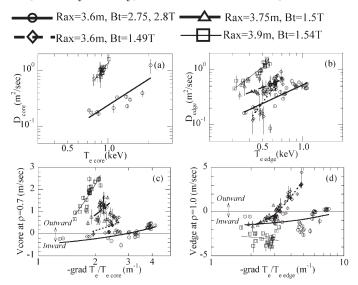


Fig.2 Parameter dependence of D and V (a) T_e dependence of D_{core} , and (b) D_{edge} , $-grad\ T_e/T_e$ dependence of (c) V_{core} and (d) V_{edge}

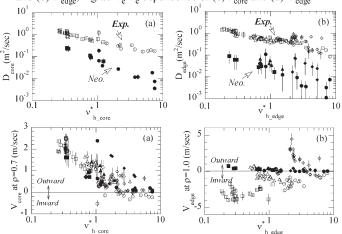


Fig.3 Comparison with neoclassical estimation (a) D_{core} , (b) D_{edge} , (c) V_{core} and (d) V_{edge} . Symbols are same as in Fig.2 Coloured symbols indicates neoclassical estimation.