§4. Averaged Resistive MHD Equations

Todoroki, J.

$$
\begin{aligned}
& \frac{\partial \mathcal{L}_{0}[\xi, a]}{\partial \xi}-\frac{\partial \mathcal{M}[\xi, a]}{\partial \xi}=0, \\
& \frac{\partial \mathcal{L}_{0}[\xi, a]}{\partial a}+\frac{\partial \mathcal{M}[\xi, a]}{\partial a}=0 .
\end{aligned}
$$

with the Lagrangian dendities ${ }^{1)}$

$$
\begin{aligned}
& \mathcal{L}_{0}[\xi, a]=q^{2} \rho \xi^{2}+q \eta a^{2} \\
& \quad+[Q-\nabla \times(\eta a)] \cdot[Q+J \times \xi-\nabla \times(\eta a)] \\
& \quad+(\xi \cdot \nabla P) \nabla \cdot \xi+\gamma_{s} P(\nabla \cdot \xi)^{2}, \\
& \mathcal{M}[\xi, a]=J \times \xi \cdot \nabla \times(\eta a),
\end{aligned}
$$

where $\xi_{\text {_ }}$ stands for the plasma displacement, \boldsymbol{a} is the electric displacement which is related to the perturbed magnetic field \boldsymbol{b} by the relation $\boldsymbol{a}=\nabla \times \boldsymbol{b} / q$, and $\boldsymbol{Q} \equiv \nabla \times(\boldsymbol{\xi} \times \boldsymbol{B})$.

We assume that the coordinate are chosen so that the Jacobian \sqrt{g} is independent to ζ, and the perturbation is of single toroidal harmonics on this magnetic coordinates. Then we can obtain the equations

$$
\begin{aligned}
& q^{2} \rho \mathcal{I}_{*}^{2} \underline{\underline{\mathbf{G}}} \cdot \overline{\bar{\xi}}=-\mathcal{I}_{*} \underline{\nabla} p_{1} \\
& \quad+\overline{\boldsymbol{J}} \times \overline{\boldsymbol{Q}}+\underline{\nabla} \times(\underline{\underline{\mathbf{G}}} \cdot \overline{\boldsymbol{Q}}) \times \overline{\boldsymbol{B}} \\
& \quad+\underline{\nabla} \times(\eta \underline{\boldsymbol{a}}) \times \overline{\boldsymbol{J}}+\overline{\boldsymbol{B}} \times \underline{\nabla} \times[\underline{\underline{\mathbf{G}}} \cdot \underline{\nabla} \times(\eta \underline{a})], \\
& \mathcal{I}_{*} p_{1}=\mathcal{I}_{*}(\bar{\xi} \cdot \underline{\nabla} P)+\gamma_{s} P \underline{\nabla} \cdot(\boldsymbol{J} \overline{\boldsymbol{\xi}}), \\
& q \underline{\underline{\mathbf{G}}}^{-1} \cdot \underline{\boldsymbol{a}}=\underline{\nabla} \times(\underline{\underline{\mathbf{G}}} \cdot \overline{\boldsymbol{Q}})-\underline{\nabla} \times[\underline{\underline{\mathbf{G}}} \cdot \underline{\nabla} \times(\eta \underline{\boldsymbol{a}})] .
\end{aligned}
$$

If we use the relation $q \underline{a} \equiv \underline{\underline{\mathbf{G}}} \cdot \underline{\nabla} \times(\underline{\underline{\mathbf{G}}} \cdot \bar{b})$, we can write the equation in tems of the perturbed magnetic field b

$$
\begin{aligned}
& q^{2} \rho \mathcal{I}_{*}^{2} \mathbf{\underline { \mathbf { G } }} \cdot \bar{\xi}=-\mathcal{I}_{*} \underline{\nabla} p_{1} \\
& \quad+\overline{\bar{J}} \times \overline{\boldsymbol{b}}+\underline{\nabla} \times(\underline{\underline{\mathbf{G}}} \cdot \overline{\boldsymbol{b}}) \times \overline{\boldsymbol{B}} \\
& \overline{\boldsymbol{b}}-\underline{\nabla} \times(\overline{\boldsymbol{\xi}} \times \overline{\boldsymbol{B}})+\frac{1}{q} \underline{\nabla} \times[\eta \underline{\underline{\mathbf{G}}} \cdot \underline{\nabla} \times(\underline{\underline{\mathbf{G}}} \cdot \overline{\boldsymbol{b}})]=0 .
\end{aligned}
$$

1) J.Todoroki: J.Phys. Soc. Jpn. 61 (1992) 2615
