■ 講座 高速プラズマ流と衝撃波の研究事始め

5.実験室における高速流と衝撃波研究の最前線

5.7 トロイダル・プラズマの高速流ーポロイダル・ショック

伊藤公孝, 糟谷直宏, 伊藤早苗¹⁾ 核融合科学研究所, ¹⁾九州大学応用力学研究所 (原稿受付: 2007年3月38日)

トロイダル・プラズマのポロイダル速度が大きくなった場合,速度や密度のポロイダル角依存性が強くなり ついにはジャンプを持つショックが生まれうる.この課題に対する研究の歴史的流れを概観し,ポロイダル・ ショックを生み出す物理的機構について要点を述べる.Hモードの周辺輸送障壁にみられるポロイダル・ショッ クを含む二次元構造についても簡単に触れる.

Keywords:

poloidal shock, poloidal rotation, transport barrier, two-dimensional structure

5.7.1 はじめに

トロイダル・プラズマの磁気面上の流れは,様々な観点 の興味を持って研究されてきた[1].トーラスは「二重連 結」と呼ばれることがあるように,ポロイダル,トロイダ ルの(トポロジー的に異なった)二方向があり,それぞれ 角度にして2π廻るともとに戻る.この二種類の方向を反映 して,回転方向にはトロイダル方向とポロイダル方向の二 種類があり,その組み合わせからなる流れの構造の固有 モードもある.(実際,「ポロイダル流」と呼ばれるプラズ マの運動は,大概トロイダル方向の速度成分も伴ってい る.)ポロイダル流やトロイダル方向の流れは,ビームなど の運動量入射によって駆動されるものの他,径電場による ドリフト運動や乱流に起因するものなどの自発的な回転が ある.自発的と見なされる流速は音速の1割程度に達する ものもあり,その理解はトロイダル・プラズマの中心的課 題の一つである.

トロイダル・プラズマの流れに伴う諸問題の中から,本 稿では、トロイダル方向の外部駆動がない場合の高速ポロ イダル流について、ショック形成の問題を概説する.トカ マクではポロイダル・ショックはトロイダル流に比較し容 易に発生し実際の閉じ込め実験でも重要な影響を持つの で、この問題について議論する.まず当該課題の位置づけ を歴史的流れにそって概観する.次にポロイダル・ショッ クを生み出す物理的機構について要点を述べる.そして実 際にポロイダル・ショックが生まれるようなHモードの周 辺急峻電場の二次元構造について説明する.

5.7.2 研究の展開

トカマクのポロイダル流の研究が本格的になったのは 5.7 High Speed Flow in Toroidal Plasmas – Poloidal Shock

ITOH Kimitaka, KASUYA Naohiro and ITOH Sanae-I.

1970年頃にさかのぼる.トロイダル・プラズマでは磁気面 が入れ子状になっており,ひとつの磁気面は高い電気伝導 度のためほとんど等ポテンシャル面になる.静電場は磁気 面を横切る方向を向くので, E×B ドリフトは第零次では ほぼ磁気面上にある.図1に概念図を示す.(高次の補正 が磁気面を横切る輸送として残る.)磁気面上にある流速が どのように振る舞うか,トロイダル効果への理解の深まり とともに明らかにされてきた.

トロイダル・プラズマではトロイダル効果によって,磁 気面上でも磁場の強さが均一ではなく,また磁力線の曲率 も一様ではない.トロイダル効果がもたらす衝突拡散の理 論が新古典輸送理論として体系化されたこの時代に,オー ムの法則(電気抵抗ゼロの極限で)

$$-\nabla \boldsymbol{\Phi} + \boldsymbol{V} \times \boldsymbol{B} = 0 \tag{1}$$

図1 トロイダル・プラズマと磁力線、ポロイダル回転、磁力線 方向に(音速で)伝わる波数ベクトルとそのポロイダル成分 を示す。

corresponding author's e-mail: itoh@nifs.ac.jp

 $(\phi:静電ポテンシャル, V:速度, B:磁場)$ にしたがう 流れVは径電場があるときどうなるか、理論研究が集中的 に行われた.そこで見いだされたこととして,(i)径方向流 束のポロイダル不均一と結合しポロイダル流が励起される 可能性があること (Stringer spin-up) [2], (ii) ポロイダル速 度 V_{θ} を示す無次元量ポロイダル・マッハ数 $M_{\text{p}} = q \epsilon^{-1} c_{\text{s}}^{-1} V_{\theta}$ によって流れの構造が分類されること、(すなわち Mp は、ポロイダル方向のプラズマ流速度と、(磁力線方向を 向いた)音速のポロイダル方向への射影 csɛ/q との比になっ ている. ここで $q = B_{\varepsilon} r / B_{\theta} R$ は安全係数, $\varepsilon = r / R$ は逆アス ペクト比, cs は音速), (iii)Mp が1程度ではポロイダル・ ショックが起きうること[3], (iv)磁気面上で均一なポロイ ダル流には定常流の他,振動数 $\omega_{c} = \sqrt{2}c_{s}/R$ をもつ geodesic acoustic mode (GAM) という固有モードがあること [4], などがあげられる. さらに(v)非軸対称トーラスでリッ プル捕捉粒子の衝突拡散が電子とイオンの径方向移動度に 差をもたらし, 径電場 (とプラズマ流) の分岐を生むこと [5]なども見いだされた.(もちろん,オームの法則(1) は、電気抵抗や電子の慣性や圧力勾配の効果など種々の重 要な効果を無視した単純化モデルであり、それらの効果は 本質的かつ重要な効果を持っている.興味深いダイナミッ クスが生まれるが、別の場に譲る.)

ここであらためてトロイダル方向の流れとポロイダル方 向の流れについて説明を補足する.本稿では、トカマクプ ラズマの中でトロイダル対称性を持った流れを説明してい る.図2に示すように、磁気面上の速度を特徴づけるとき に、「ポロイダル方向とトロイダル方向」という分割の仕方 と,「磁力線に垂直方向と平行方向」という区別の仕方とい う二通りの説明の仕方がある. トロイダル成分のみを持つ 流れは、 $\partial V_{\varepsilon}/\partial \zeta = 0$ という対称性の故に $\nabla \cdot V = 0$ を満たすの で,独立な定常プラズマ流として現れうる.それに対して, ポロイダル方向の流れのみでは∇·V=0を満たすことがで きず(それ故定常状態ではなくなって),「ポロイダル流」と 呼ばれるものはポロイダル方向の流れと磁力線方向の流れ との組み合わせである. その組み合わせについては、本誌 [6]に解説されている.図3を参照のこと.また,径電場の もとでポロイダル流になるかトロイダル流になるかの条件 は[1]に説明されているので参照されたい.トカマクの普 通の状況ではポロイダル流になる.

実際のトロイダル・プラズマでは輸送現象は乱流輸送に 支配されている.トカマクの異常輸送が自発的に減少する 改善閉じ込め現象がASDEXにおけるHモードの発見[7] をきっかけとして研究の焦点になった.それを理解する理 論として、プラズマ端近傍での強い径電場状態への分岐理 論[8]と、不均一電場がもたらす $E \times B$ シア流による揺動抑 制理論[9-11]が提示され、実験的検証も行われた[12].そ して $M_p \sim 1$ 程度の流れと径電場が異常輸送について重要 でありかつ現実の問題であることが理解された[13].特 に、分岐や界面の問題の重要性が認識されたHモード理論 構成に動機づけられ、ポロイダル・ショック理論の進展が 促された[14,15].実際のHモードの輸送障壁は半径方向 に薄い急峻な構造を持つので、ポロイダル・ショックが起

図2 プラズマの速度をポロイダル速度とトロイダル速度で表現 する場合(左)、および磁力線に垂直な速度と磁力線に平行 な速度で表現する場合(右).

図3 ポロイダル流に磁力線方向の rerturn flow が付随するので、 「ポロイダル流」と呼びながら実態はヘリカル流である.

きるような状況では二次元の構造を理解する必要がある [16].

プラズマ乱流はポロイダル方向の運動量を移送するの で、ポロイダル流を増減する駆動力も持っている.改善閉 じ込め現象の研究が進むにつれて、乱流によってポロイダ ル流を駆動・減衰する効果の研究が進んだ.一群の乱流に 着目すると、(半径方向に)相関長より離れた位置に運動量 を運ぶことはないので、その程度の長さで粗視化すれば全 ポロイダル運動量は保存しており、近くの磁気面の間での 運動量のやりとりになる.乱流粘性をもたらすことは予想 されるが、それだけではなく、半径方向に比較的短波長で 方向が変わる帯状流を不安定化することが見いだされた [17,18].この機構はポロイダル方向に局在するストリー マを駆動する可能性もあり[18,19]、乱流中のポロイダ ル・ショック研究へと展開する.

こうした研究の発展を経て、半径方向とポロイダル方向 の急峻な構造も包み、かつミクロ乱流をメゾスケールの帯 状流と結合させた体系で解析する研究が進められている. それは、ミクロ乱流とメゾスケールの帯状流・ストリーマ や巨視的径電場などの構造分岐と一体として、乱流輸送を 研究する体系へと展開する.

5.7.3 ポロイダル・ショックを生む機構の要点

ポロイダルショックを作る機構の基礎的な説明は[3]が 明快である.(より詳細な説明としては[14,15]を参照され たい.)ここでは外部駆動のない自己形成ポロイダル流に対 する電場ドリフトによる定常ポロイダル流について,流体 方程式を用いて説明する.円形断面の高アスペクト比トカ マク (軸対称)を考え,トロイダル座標 (r, θ , ξ)において磁 場を $B = (1 + \epsilon \cos \theta)^{-1} B_0(0, \epsilon/q, 1)$ と表記する.(図1). プラズマの温度は均一で等温とする.(ここでは温度 T は 一定とする.この仮定は高い熱伝導度に基づいて単純化し たものである.イオンは無衝突状態で非等方になり T 一定 というのは限定された単純化であるけれど,この解説では その単純な場合のみ説明する.)オームの法則(1)にあわ せ,粒子密度の連続方程式,運動方程式,中性条件が密度 n,速度V,電流J,ポテンシャル ϕ を決定する:

$$\frac{\partial n}{\partial t} + \nabla \cdot (nV) = 0 \tag{2}$$

$$\frac{\partial V}{\partial t} + V \cdot \nabla V = -c_{\rm s}^2 n^{-1} \nabla n + \frac{1}{m_{\rm j} n} J \times B \tag{3}$$

$$\nabla \cdot J = 0 \tag{4}$$

定常状態では面積要素を乗じた流束 $(1+\epsilon\cos\theta)nV_{\theta}$ が磁気面関数である (θ によらない)ことが導かれる. さらに, (3)式とBの内積がゼロであることと(1)式のr成分の二 つの関係式から V_{ξ} を消去すれば,あらたな磁気面関数

$$\frac{\partial}{\partial\theta}\left\{\frac{1}{2}V_{\theta}^{2} + \frac{\varepsilon^{2}c_{s}^{2}}{q^{2}}\ln n - (1+\varepsilon\cos\theta)^{2}\frac{E_{r}^{2}}{2B_{0}^{2}}\right\} = 0 \qquad (5)$$

を得る.(5)式の括弧内の量が磁気面関数である.(以下の議論ではポロイダル速度に着目して説明するが、ここに 「 V_{ξ} を消去」と書いたように、 V_{ξ} も同時に伴っている.概 念図3.)

(5)式はベルヌーイの法則に相当するものであり、ポロ イダル・ショックを考える上での基本的な関係式になる [3]. この関係式は、運動エネルギーの θ 方向の差(括弧内 第一項と第三項)が、θ方向の圧力勾配と釣り合うことを示 した関係式である.磁場の強さがθ方向に変化するため, $E \times B$ 流速度が θ 方向に一定にならず, 定常流では圧力勾 配を生み出すことを示している.同時になぜショックが現 れるかを説明するためにもわかりやすい関係式になってい る. (5)式の括弧内第二項は密度変動の情報が音速で伝わ る効果に対応する.図1に示すように径電場によってポロ イダル方向にプラズマが廻るとき,磁力線にそって音速 $c_{\rm s}$ で進む密度の疎密の情報の等位相面は、速度 $q \varepsilon^{-1} c_{\rm s}$ を 持ってポロイダル方向に伝わる.したがってポロイダル方 向のプラズマ速度が $q\epsilon^{-1}c_s$ に近づけば、(プラズマ・フ レームでは) 密度疎密の情報のポロイダル方向伝播速度が ゼロになる.アナロジーを言えば、流速が「実効的音速」に 近づくわけである.一方,径電場によるプラズマ回転は, トロイダル効果があるので(トーラス外側と内側で面積要 素が変わり)プラズマの圧縮・膨張を生み出そうとする ((5)式の括弧内第3項が $\epsilon \cos \theta$ という変動項を含んでい ることに反映されている). これらの事情から、ポロイダ ル・マッハ数が重要な無次元量になる.実際のトカマクで は、q~3、ε~1/3 程度であり、通常のマッハ数(速度と音 速の比)と比較し、ポロイダル・マッハ数は10倍程度大き

くなる.(誤解を防ぐため説明を補足すると,ここで「音速 で伝わる」という言い方をしているのは、その項を動的方 程式に入れるとどの程度の時間変化を生む項であるかとい う意味であり、音波を扱っているわけではない.定常状態 での釣り合いを述べている.実際、トロイダル・プラズマ 中では、軸対称の (m = 0, 1 成分からなる)音波は普通の音 波ではなく、geodesic acoustic modes と呼ばれるものに変 形される[6].)

この章の議論では半径方向の構造は議論せずプラズマパ ラメタは定数と扱い、ポロイダル方向のショックを説明す る.(二次元分布の問題は、次節で説明する.)ポロイダル 方向の流束については($1+\epsilon\cos\theta$) nV_{θ} が磁気面関数であ ることに注意し(5)式の $\ln n$ という項を $\ln V_{\theta}$ で書き直す. ある磁気面関数F(r)を用いて、ポロイダル方向速度の θ 依存性を拘束する条件式

$$\frac{1}{2}V_{\theta}^{2} - \frac{\varepsilon^{2}c_{s}^{2}}{q^{2}}(\ln V_{\theta} + \ln(1 + \varepsilon\cos\theta)) - (1 + \varepsilon\cos\theta)^{2}\frac{E_{r}^{2}}{2B_{c}^{2}} = F(r) \quad (6)$$

が得られる.(6)式をポロイダル方向に平均した量と(6) 式との差を取って

$$\begin{split} \frac{1}{2}V_{\theta}^{2} - \frac{\varepsilon^{2}c_{\rm s}^{2}}{q^{2}}\ln V_{\theta} - \left\langle \frac{1}{2}V_{\theta}^{2} - \frac{\varepsilon^{2}c_{\rm s}^{2}}{q^{2}}\ln V_{\theta} \right\rangle \\ = \varepsilon \left(\frac{\varepsilon^{2}c_{\rm s}^{2}}{q^{2}} + \frac{E_{\rm r}^{2}}{B_{0}^{2}} \right) \cos \theta \quad (7) \end{split}$$

を得る. (〈…〉はポロイダル方向の平均.) ポロイダル・ マッハ数に相当する規格化速度 $u = V_{\theta}q/\epsilon c_s$ を用いると, (7)式を規格化して,速度のポロイダル方向分布 $u(\theta)$ を 決める条件式として

$$\frac{1}{2}u^2 - \ln u - \left\langle \frac{1}{2}u^2 - \ln u \right\rangle = \varepsilon \left(1 + \hat{E}_r^2\right) \cos \theta \qquad (8)$$

を得る.ここで $\hat{E}_r = E_r q / B_0 \varepsilon c_s$ は規格化された(ポロイダ ル方向の) $E \times B$ 速度である.

(8)式からポロイダル・ショックの発生条件とポロイダ ル構造の基本的性質が理解される.まず、トロイダル効果 がなければ($\epsilon = 0$)、(8)式はあからさまに θ 依存性を含ま ず、任意の値の速度 u に対して、 θ に依存しない一定速度 $u = \langle u \rangle$ が許される.しかし、トロイダル効果があると、右 辺が θ とともに $\pm \epsilon (1 + \hat{E}_r^2)$ の幅で変動するので、速度 uも θ に依存して変動する.そのため、亜音速に相当する状 態から超音速に相当する状態への遷移がおきうる.図4に 示すように、(8)式左辺に現れる関数 $u^2/2 - \ln u$ は u = 1で極小値1/2を持つ.(この値u = 1は、ポロイダル方 向に射影した音速が回転速度に一致することに相当.) u < 1の(亜音速に相当)状態とu > 1の(超音速に相当)状 態の二つの速度値において、関数 $u^2/2 - \ln u$ は共通の値を 持つ.uの値がu = 1近傍であり

$$|u-1| < \sqrt{\varepsilon (1+\hat{E}_r^2)} \tag{9}$$

図 4 ベルヌーイの定理に現れる関数を示す. 規格化速度 u(ポロ イダル・マッハ数)は、u = 1の近傍で $\sqrt{2\epsilon} (1 + \hat{E}_r^2)$ の幅を持 つ.

を満たすと、 θ の変化とともにu < 1の状態とu > 1の状態 が連続的につながる、u = 1の近傍という条件を満たすの は、 $1 - \langle u \rangle$ で評価すると $\sqrt{\epsilon}$ のオーダの幅である、ポロイダ ル角依存性を求めるため

 $u = \langle u \rangle + \delta u(\theta)$

として摂動を考え、(8)式から $\delta u(\theta)$ を解くと、例えば

$$\delta u(\theta) = \delta u(\theta)_{+} \quad [0 < \theta < \theta_{c}],$$

$$\delta u(\theta) = \delta u(\theta)_{-} \quad [\theta_{c} < \theta < \pi],$$

$$\delta u(\theta) = \delta u(\theta)_{+} \quad [\pi < \theta < 2\pi]$$
(10)

((*u*)>1の場合を示す)のように, 関数

$$\delta u(\theta)_{\pm} = 1 - \langle u \rangle \pm \sqrt{\varepsilon (1 + \hat{E}_{r}^{2})(1 + \cos \theta)}$$
(11)

を区間でつないだ解が与えられる. $\theta_c \operatorname{table}(\delta u(\theta)) = 0$ から定 まるが、 $\theta_c \operatorname{clasurc} \delta u(\theta)$ は不連続になりショックが現れ る. $\delta u(\theta)_{\pm}$ が0 < θ < 2π の周期関数ではないので解は不連 続となる. 図5にショックを含む速度分布の例を示す. 図 5の実線で示す例は、トーラス外側で $u(\theta) > 1$ であり、上 半面を流れるうちに $\theta = \theta_c$ においてショックを形成し $u(\theta) < 1$ と減速され、トーラス内側から下半面を流れなが ら加速される分布の例である. (超音速領域がショックを 追いかける形で現れる.同じ位置で逆につながる場合 –

点線で示している – は、ショック面を境に加速される rarefaction shock に相当するもので、定常状態としては許されない[20](注). $\langle u \rangle < 1$ の場合は、 $\theta_c > \pi$ でショック面が現れる.)

密度についても上記の区間において解

$$\delta n(\theta)_{\pm} = -\frac{\langle n \rangle}{\langle u \rangle} \Big\{ 1 - \langle u \rangle \pm \sqrt{\varepsilon (1 + \hat{E}_{r}^{2})(1 + \cos \theta)} \Big\} \quad (12)$$

で与えられる((11)式と複合同順). θ_cにおいてショックが

図5 ポロイダル・ショックを含む解. ポロイダル速度 θ の分布 $\theta = \theta_c \epsilon$ 界面とする解を示す. 実線は $\langle u \rangle > 1$ の場合. (uは ポロイダル・マッハ数)

現れるとき,(面積要素を乗じた流束(1+ $\epsilon \cos \theta$) nV_{θ} が θ によらない磁気面関数であることからわかるように)界面 $\theta = \theta_{c}$ を境に速度 V_{θ} が減少すると密度は増加する.通常の ショックの問題と共通である.

(8)式の条件と周期性からは、 $\delta n(\theta)_+ \delta \delta u(\theta)_- \delta n(\theta)_+ \delta \delta u(\theta)_- \delta n(\theta)_+ \delta \delta u(\theta)_- \delta n(\theta)_+ \delta n(\theta)_+ \delta n(\theta)_- \delta n(\theta)_+ \delta n(\theta$

臨界ポロイダル速度 $V_{\theta} = \epsilon q^{-1}c_s$ でショックが現れるが, $\epsilon \rightarrow 0$ (円柱プラズマ)の場合を注意しておく.((8)式のよ うに規格化した後, q を固定して $\epsilon \rightarrow 0$ とすると, \hat{E}_r が発 散し,特異なことが起きると誤解されかねない.)(7)式 にもどって $\epsilon \rightarrow 0$ とすれば,ポロイダル速度は θ によらず 一定になり, $V_{\theta} = \epsilon q^{-1}c_s$ (すなわち $V_{\theta} = 0$)になっても,円 柱プラズマでは特異性はなくショックが現れない.常識的 な理解に一致する.

次節に拡散の効果や二次元性の効果を簡単に説明し, ショックの界面の急峻さがどのようになるか,実際にどの ように観測されるかを概観する.

5.7.4 二次元構造

トロイダルプラズマにおける H モードの輸送障壁中で は、大きなポロイダル流が存在するので、ポロイダル方向 にショック状不均一構造が形成されうる.そのため、改善 閉じ込めを定量的に評価するには径方向のみならず、ポロ イダル方向も含めた二次元的に急峻な構造形成機構を理解 する必要があり、自己無撞着な密度、電位分布を求める研 究がなされている[21].二次元構造を求めるために、運動 量保存則(3)式に乱流粘性からくるシア粘性を流速の二階 微分に比例する拡散項として加えたモデルを用いる.この

(注)ショック面を境に速度が減り圧力が増す場合(超音速領域がショック面に追いついている場合)は、ordered motion が乱雑運動に変換されているわけで、エントロピーが増大していることを示すことができる。逆に、ショックの前面が超音速である rarefaction shock では、そのままではエントロピーが減少することになり、定常かつシャープなショック面は維持されない.界面の勾配が どんどん緩やかになるようなダイナミックスを示すことになる.

図6 トカマク周辺輸送障壁における二次元電位構造. ポロイダ ル断面における外側点線がプラズマ端(リミタ電位),内側 点線が挿入電極端(電極電位)をあらわし,その間に輸送障 壁が形成されている.

シア粘性項が径方向とポロイダル方向の結合を与える.密度のポロイダル摂動が $O(\varepsilon^{12})$ であるとしてモデル方程式 を $u \sim 1$ で展開する.(i)(3)式のポロイダル成分の磁気面 平均から、ポテンシャルの平均量が得られ、(ii)(3)式の磁 力線方向成分から、平均からのずれとしての径・ポロイダ ル二次元分布 $\delta \Phi(r, \theta)$ や $\delta u(r, \theta)$ が求まる.ポロイダル・ ショックの界面(図5の θ_c)における不連続性はなくなり、 急峻ではあるが有限な勾配となる.このオーダを用いると 径方向流速はポロイダル流速よりも十分小さいので、(i)で 求めたポロイダル流分布を(ii)に代入して二次元分布を求め るという逐次的な解法を用いることができる.

トカマクHモード時のプラズマ端近傍領域で二次元的な ポテンシャル分布が得られている.図6にその一例を示 す.プラズマ端部に挿入した電極とリミタ間に電圧を印加 して得られる電極バイアスHモードの解析結果である.径 方向に急峻な構造とともにポロイダル方向に局在化した急 峻な電場構造(ポロイダル・ショック構造)が競合した二 次元構造が得られている.なお,乱流によるシア粘性が径 方向の特徴的なスケールを与えており,また,ポロイダル ショックの位置はポロイダル流の大きさに依存する.この 結果は,実際のHモードで観測される強い径電場(~10 kV /m)に伴うポロイダル電場によって,径方向の対流的イオ ン粒子束(ピンチ速度~1 m/s 以上)が生じることを示して いる[22].そしてこの径方向粒子輸送がL/H遷移時の早い 密度ペデスタル形成の一因となると考えられている.

5.7.5 まとめ

本稿で概観したような経緯を経て、ミクロ乱流やメゾス ケールの帯状流のダイナミックスおよび巨視的径電場など を総体として捉えるプラズマの理解が形成された.そして 乱流輸送や構造相転移・ダイナミックスを一体として構成 する研究体系へと展開した.

ショックの問題は、プラズマの輸送過程における非線形 性の現れの典型的問題であり、輸送障壁や界面の問題とし て研究の広がりを持っている.理論的に広く研究されてい ることと比較し、(二次元構造もふくめ)実験的な研究は多 くない. [23,24]などの初期的な研究が報告されているが, そこでも二次元構造の重要性が示されている. 最近のヘリ カル系閉じ込めの実験でも,高速流励起が試みられ[25]ま た内部輸送障壁に伴った高速流の存在[26]が示唆されてお り,二次元構造研究も含めた今後の発展が待たれている. ここではトカマクという軸対称性のある系を説明したた め,純粋にトロイダル方向を向いた流れと,磁力線方向の リターン流を伴ったポロイダル流が独立なパターンになっ ている. ヘリカル系では,軸対称性がないので,トロイダ ル方向流の減衰率が大きく, E×B 速度がトロイダル方向 を向くこともあり,実験観測もなされている[27].本稿は そうした問題の入門にもなるだろう.

ポロイダル・ショックの問題はトロイダル・プラズマの 特殊な条件で起きる現象ではあるが、プラズマの大域的流 れや衝突拡散と乱流輸送とが結合して生起しているプラズ マのダイナミックスを理解する上での要所にも位置してお り、far-from-equilibrium system としてのプラズマの理解 や核融合装置の性質の予測にとって忘れられない問題であ る.

謝辞

本稿にたいし講座の主宰者である犬竹正明教授より詳細 なコメントをいただきました.基礎となりました研究を進 めるにあたり,佐貫平二教授,矢木雅敏教授,福山淳教授, P.H. Diamond 教授,ほか多くの研究者の方からご教示を得 ました.改めて感謝いたします.文部科学省科学研究費特 別推進研究(16002005),科学研究費基盤研究(15360495), 核融合科学研究所共同研究(NIFS06KDAD005,NIFS03 KKMD001)並びに九州大学応用力学研究所共同研究の援 助を受けたことを感謝します.

参考文献

- [1] K. Itoh, S.-I. Itoh and A. Fukuyama, *Transport and Structural Formation in Plasmas* (IOP, Bristol, 1999). およびK. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion **38**, 1 (1996).
- [2] T.E. Stringer, Phys. Rev. Lett. 22, 1770 (1969).
- [3] R.D. Hazeltine, E.P. Lee and M.M. Rosenbluth, Phys. Fluids 14, 361 (1971).
- [4] N. Winsor, J.L. Johnson and J.M. Dawson, Phys. Fluids 11, 2448 (1968).
- [5] See, for a review, L. M. Kovrizhnykh, Nucl. Fusion 24, 851 (1984).
- [6] K. Itoh and S.-I. Itoh, J. Plasma Fusion Res. 81, 972 (2005).
- [7] F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).
- [8] S.-I. Itoh and K. Itoh, Phys. Rev. Lett. 60, 2276 (1988).
- [9] S.-I. Itoh and K. Itoh, J. Phys. Soc. Jpn. 59, 3815 (1990).
- [10] K.C. Shaing, E.C. Crume Jr and W.A. Houlberg, Phys. Fluids B 2, 1492 (1990).
- [11] H. Biglari, P.H. Diamond and P.W. Terry, Phys. Fluids B 2, 1 (1990).
- [12] K. Ida et al., Phys. Rev. Lett. 65, 1364 (1990).
- [13] K. Itoh and S.-I. Itoh, Plasma Phys. Control. Fusion 38, 1 (1996).

- [14] T. Taniuti, H. Moriguchi, Y. Ishii, K. Watanabe and M. Wakatani, J. Phys. Soc. Jpn. 61, 568 (1992).
- [15] K.C. Shaing, R.D. Hazeltine, H. Sanuki, Phys. Fluids B 4 404 (1992).
- [16] N. Kasuya, K. Itoh and Y. Takase, Nucl. Fusion 43, 244 (2003).
- [17] P. H. Diamond et al., Nucl. Fusion 41, 1067 (2001).
- [18] P. H. Diamond, S.-I. Itoh, K. Itoh and T.S. Hahm, Plasma Phys. Contr. Fusion 47, R35 (2005).
- [19] A. Yoshizawa, S.-I. Itoh and K. Itoh, *Plasma and Fluid Turbulence* (IOP, Bristol, 2002).
- [20] Ya.B. Zel'dovich and YuP. Raizer, *Physics of shock waves and high-temperature hydrodynamic phenomena* (Dover, New York, 2002).
- [21] N. Kasuya and K. Itoh, J. Plasma Fusion Res. 81, 553 (2005).
- [22] N. Kasuya and K. Itoh, Phys. Plasmas 12, 090905 (2005).

- [23] A. Mohri and M. Fujiwara, Nucl. Fusion 14, 67 (1974).
- [24] R.J. Taylor, P. Pribyl, G.R. Tynan and B.C. Wells in Proceedings of 15th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Seville, 1994 (IAEA, Vienna, 1995) Vol. 2, p. 127.
- [25] H. Yamada, H. Sanuki, R. Kumazawa, S. Morita, K. Ida and Torus Experiment Group, Annual Report of NIFS (April 1991 – March 1992) p.171.
- [26] 関連研究のレビューの例として A. Fujisawa, Plasma Phys. Control. Fusion 45, R1 (2003).
- [27] K. Ida, T. Minami, Y. Yoshimura, A. Fujisawa, C. Suzuki, M. Yokoyama, S. Murakami, S. Okamura, S. Nishimura, M. Isobe, H. Iguchi, K. Itoh, S. Kado, Y. Liang, I. Nomura, M. Osakabe, C. Takahashi, K. Tanaka and K. Matsuoka, Plasma Phys. Contr. Fusion 44 361 (2002).