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In order to evaluate the forces on the dust particle, the
particle flux, the ion flow velocity and the electric field at
the wall are necessary. In this study the collisionless Debye
sheath is considered to obtain these quantities, where the
electrostatic potential and the electric field at the Debye
sheath entrance are vanishing and the charge neutrality is
satisfied at the sheath entrance. In this model the particle
flux is conserved. The ion flow velocity at the wall is
obtained as a function of the electrostatic potential drop at
the wall ¢,, and the electron temperature from the particle
flux and energy conservations inside the collisionless
Debye sheath,
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Here V. is the monoenergetic ion flow velocity at the
Debye sheath entrance, which is equal to the ion sound

speed ¢, = ,/Zl. ./ m. from the Bohm criterion. The

electric field at the wall is given by integration of Poisson
equation combined with the local ion and electron densities.
The local ion density is expressed by the local electrostatic
potential ¢,
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In this system, where there are no particle sources, sinks
and collisions, the local energy distribution function of
electrons, £, (&), is the same as at the sheath entrance,

fe0 (€),. Here &, is the total particle energy

(= mev2 /2 — e¢ ) in the local electrostatic potential ¢. The
local macroscopic quantities inside the system are easily
calculated by using the local energy distribution function.
Inside the Debye sheath there are electrons with positive
and negative velocities due to the reflection by the
monotonically decreasing potential.
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where the quantity ngﬂ is the local density of electrons

with positive velocities, which obeys the Boltzmann
relation:
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and ng_) is that with negative velocities:
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It is reasonable to see that there are no electrons with

negative velocities at the wall. Here ng'e) is the density of

electrons with positive velocities at the Debye sheath
entrance, which is expressed by the total electron density at
the Debye sheath 7.,
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This gives the local electron density as a function of local

potential ¢
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The local ion density, Eq.(2), and electron density, Eq.(7),
give the electric field at the wall by solving the Poisson’s
equation:
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The first term of RHS of Eq.(8) is the effect of truncated
electron distribution and the last two terms come from the
ion density. These quantities are used to evaluate a force
balance acting on the spherical dust particle on the
conducting wall. In the case of electrons with the
Maxwellian velocity distribution, the electric field at the
wall obtained from Poisson equation is
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In Fig.1 the electric field at the wall is shown for both cases,
where for the potential drops ~1 the electric field with
truncation is stronger by around 50% than that without
truncation.
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Fig.1 Electric field at the wall as a function of normalized
wall potential drop for cases with and without truncation.





