§8. Measurement of Neutral Particles by Means of Sound Wave

Tsushima, A., Machida, M. (Yokohama National Univ.), Tanaka, M.Y.

In a large diameter plasma such as the HYPER-I device ¹⁾, the spatial distribution of neural particles is expected to be important for a plasma production. In order to measure the local properties of the neutral particles, we have developed a new method using sound waves with two different frequencies.

Figure 1 shows that the propagation speed of the pressure perturbation caused by the vibrating prate depends on the gas parameter $r (= p / \mu \omega)$ where p is the ambient pressure in Pa, μ is the viscosity in Pas, and ω is the angular frequency of the perturbation in rad/s. Here, the propagation speed, v, is normalized by sound speed $c_s [= (\gamma p / \rho)^{1/2}, \rho:$ the mass density in kg/m³, γ : the specific heat ratio]. The open circles and the open squares are the measurements by Greenspan in helium with $\omega/2\pi =$ 1 MHz²⁾ and in argon with $\omega/2\pi = 11$ MHz³⁾, respectively. The closed squares and triangles are our measurements in helium with $\omega/2\pi = 120$ kHz and 40 kHz, respectively. The solid curve, $v/c_s = (r+0.3) /$ found to fit these measured (r+0.15),is measurements.

Fig.1 Propagation speed versus gas parameter.

Now, we suppose that we have measured the propagation speeds of the pressure perturbation with different frequencies, say, ω_1 and ω_2 ($\omega_1 > \omega_2$), and the results are v_1 and v_2 , respectively. Then, we can find the ratio p/μ by the following equation:

$$p / \mu = \{ \omega_{2} / [40(R_{\nu}-1)] \} [[(10R_{\omega}+3) - (3R_{\omega}+10)R_{\nu} + \{ [(10R_{\omega}+3) - (3R_{\omega}+10)]^{2} - 120 R_{\omega}(R_{\nu}-1)^{2} \}^{1/2}]],$$

for $p/\mu > (3 \omega_1 \omega_2/40)^{1/2}$.

Here, $R_{\omega} = \omega_1 / \omega_2$ and $R_{\nu} = v_1 / v_2$. We also find the ambient gas temperature, *T*, using the equation:

$$T = (m v_1^2 / \gamma k_B) \cdot [(p / \mu) + 0.15 \omega_1]^2 / [(p / \mu) + 0.5 \omega_1]^2.$$

From this value of T, we can estimate the viscosity, given by ⁴⁾

$$\mu = 2.7 \times 10^{-6} (MT)^{1/2} / \sigma^2 \Omega_{\rm c}$$

and, simultaneously, the pressure p, since we have the value of p/μ in the procedure.

In summary, by measuring the propagation speeds of the pressure perturbation with different two frequencies, we can estimate both p and T of the low pressure ambient gas.

References

- 1) Tanaka, M. : J. Phys. Soc. Jpn. 60(1991)344.
- 2) Greenspan, M. : J. Acoust. Soc. Am. 22 (1950) 568.
- 3) Greenspan, M. : J. Acpust. Soc. Am. 28 (1956) 644.
- Reid, R. C. Sherwood, T. K. : *The Properties of Gas* and Liquids (McGrow-Hill, New York, 1958).