§8. Measurement of Neutral Particles by Means of Sound Wave

Tsushima, A., Machida, M. (Yokohama National Univ.), Tanaka, M.Y.

In a large diameter plasma such as the HYPER-I device ${ }^{1)}$, the spatial distribution of neural particles is expected to be important for a plasma production. In order to measure the local properties of the neutral particles, we have developed a new method using sound waves with two different frequencies.

Figure 1 shows that the propagation speed of the pressure perturbation caused by the vibrating prate depends on the gas parameter $r(=p / \mu \omega)$ where p is the ambient pressure in Pa, μ is the viscosity in Pas, and ω is the angular frequency of the perturbation in rad/s. Here, the propagation speed, v, is normalized by sound speed $c_{s}\left[=(\gamma p / \rho)^{1 / 2}, \rho\right.$: the mass density in $\mathrm{kg} / \mathrm{m}^{3}, \quad \gamma$: the specific heat ratio]. The open circles and the open squares are the measurements by Greenspan in helium with $\omega / 2 \pi=$ $1 \mathrm{MHz}{ }^{2)}$ and in argon with $\omega / 2 \pi=11 \mathrm{MHz}{ }^{3)}$, respectively. The closed squares and triangles are our measurements in helium with $\omega / 2 \pi=120 \mathrm{kHz}$ and 40 kHz , respectively. The solid curve, $v / c_{s}=(r+0.3) /$ $(r+0.15)$, is found to fit these measured measurements.

Fig. 1 Propagation speed versus gas parameter.

Now, we suppose that we have measured the propagation speeds of the pressure perturbation with different frequencies, say, ω_{1} and $\omega_{2}\left(\omega_{1}>\omega_{2}\right)$, and the results are ν_{1} and ν_{2}, respectively. Then, we can find the ratio p / μ by the following equation:

$$
\begin{aligned}
p / \mu=\left\{\omega_{2} /[40\right. & \left.\left.\left(R_{v}-1\right)\right]\right\}\left[\left[\left(10 R_{\omega}+3\right)-\left(3 R_{\omega}+10\right) R_{v}\right.\right. \\
+ & \left\{\left[\left(10 R_{\omega}+3\right)-\left(3 R_{\omega}+10\right)\right]^{2}\right. \\
& \left.\left.\left.-120 R_{\omega}\left(R_{v}-1\right)^{2}\right\}^{1 / 2}\right]\right],
\end{aligned}
$$

for $\quad p / \mu>\left(3 \quad \omega_{1} \omega_{2} / 40\right)^{1 / 2}$.
Here, $R_{\omega}=\omega_{1} / \omega_{2}$ and $R_{\nu}=v_{1} / v_{2}$. We also find the ambient gas temperature, T, using the equation:

$$
\begin{aligned}
& T=\left(m v_{l}{ }^{2} / \gamma k_{B}\right) \cdot \\
& \quad\left[(p / \mu)+0.15 \omega_{l}\right]^{2} /\left[(p / \mu)+0.5 \omega_{l}\right]^{2} .
\end{aligned}
$$

From this value of T, we can estimate the viscosity, given by ${ }^{4)}$

$$
\mu=2.7 \times 10^{-6}(M T)^{1 / 2} / \sigma^{2} \Omega
$$

and, simultaneously, the pressure p, since we have the value of p / μ in the procedure.

In summary, by measuring the propagation speeds of the pressure perturbation with different two frequencies, we can estimate both p and T of the low pressure ambient gas.

References

1) Tanaka, M. : J. Phys. Soc. Jpn. 60(1991)344.
2) Greenspan, M. : J. Acoust. Soc. Am. 22 (1950) 568.
3) Greenspan, M. : J. Acpust. Soc. Am. 28 (1956) 644.
4) Reid, R. C. Sherwood, T. K. : The Properties of Gas and Liquids (McGrow-Hill, New York, 1958).
