
In plasma physics, multiscale phenomena such as
electron-ion coupling are very important. However, to study
the multiscale phenomena with conventional plasma
Particle-In-Cell (PIC) code, enormous number of grids and
macro-particles as well as huge calculation time is required
because it hires uniform grid in space and time. To solve
this problem and investigate multiscale phenomena
including plasma kinetic effects, we have been developing a
new PIC code with Adaptive Mesh Refinement (AMR)
technique[1] with which we can realize high-resolution
calculation saving computer resource. In the AMR-PIC code,
fine meshes are adaptively, locally and hierarchically
generated where some physical quantities exceeds a criteria.

To realize process parallel computing, a domain
decomposition method is commonly used in which a whole
simulation region is divided into the number of process and
each sub-region is assigned to each process. The issue of
introducing the domain decomposition to the AMR-PIC is
the load balancing between processes because the number of
spatial grids and macro-particles belonging to each sub-
domain is not always constant. To avoid the imbalance
between processes, we introduced a new scheme called
dynamic domain decomposition (DDD). To determine the
manner of decomposing the domain into sub-domains in
DDD so that load balancing is achieved between processors,
we first need to number all the cells in the simulation
domain in such a manner that neighboring cells are closely
ordered in a series with a space-filling curve such as the
Morton ordered curve. With a space-filling curve, all the
cells are numbered or ordered along one dimension. In
dividing the space filling curve, we additionally need to
consider the cost of particle calculation in each cell. In
hierarchical system, calculation cost of particles increases
twice of the parent level as approaching deep hierarchical
level because the time step interval becomes half of the
parent level, t t/2, according to the grid spacing
becomes x x/2. To synchronize to the parent level,
the calculation loops for particles located in the child level
has to be doubled. Since the cost of particle calculation is
dominant in particle codes is about 70-80% of the total cost,
the number of particle calculation loops should be balanced
between each processor. The number of particle loops
distributed to each processor should be

where Nparticle is the number of particles located in a cell
belonging to the Level L domain, and Nprocess is the number
of processes used in the parallel simulation. The base level
corresponds to L=0 and L increases in the higher
hierarchical level with fine grids. Note that the time step
��������������� ��������� ������ ������ ��������������
�� ����
level L. Then the numerator of the above quantity implies
the total loop number of particle calculation in the whole
��	�����
�������	����������
�������������

Fig. 1 shows a result on DDD by performing a
simple one-dimensional simulation in which a local dense
plasma cloud is initially loaded in the central of the
simulation space. The number of cells is 5120 and we
initially put 400 particles in each cell from the cell number
2,433 to 2,688 which are located at the center region. In the
other cells, we put 20 particles per cell. Note that we used
32 processors in the parallelization and there is no
hierarchical grid system introduced in the simulation for
simplicity. In such a situation, 2L shown in the numerator of
the quantity (1) becomes the unity because of L=0 and the
whole domain should be divided into sub-domains so that
the number of particles in each sub-domain becomes
uniform. In Fig.1, it is obviously shown that the calculation
time for DDD becomes almost uniform among processors
while inbalancing of calculation time is seen for the
conventional fixed decomposition case. This difference
implies that synchronization of calculation time among
processors has been achieved for the DDD case in which
uniform number of particles is assigned in each processor.
Due to the achievement of the dynamic load balancing, the
total calculation is shortened and the calculation becomes
approximately six times faster than the conventional method
for the current simple model.

We incorporated this DDD scheme in our AMR-PIC
code and are performing test simulations to examine the
parallelization efficiency as well as the scalability with
respect to the number of processors.

1) Usui, H. et al.: Procedia Computer Science, 4(2011) 2337.

(1) Fig. 1. One example of calculation time in each process
for cases using the DDD scheme shown in red and the
fixed domain decomposition shown in green.

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Dynamic Fixed

Process number

C
al

cu
la

tio
n

tim
e

(n
or

m
al

iz
ed

)

393

§22. Development of a Multi-Scale
Electromagnetic Particle Code with
Adaptive Mesh Refinement and its
Parallelization

Usui, H. (Kobe Univ.), Nunami, M.,
Moritaka, T. (Osaka Univ.), Matsui, T. (Kobe Univ.),
Yagi, Y. (Kobe Univ.)

