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Abstract

Driven magnetic reconnection in a collisionless plasma. is Ainvestigated by means
of a two-and-one-half dimensional particle simulation. The dynamical compression
by plasma inflow forms a peaked profile of current density in the neatral sheet.
When the width of current layer is compressed as thin as the ion Larmor radius,
the charge separation becomes distinct abruptly at the center of the current layer
due to the finite ion Larmor radius effect. The charge separation in the central
current region and the subsequent spatial modification of the current profile result
in excitation of collisionless driven magnetic reconnection. In the cause of collision-
less driven magnetic reconnection an efficient energy conversion from field energy

to particle energy is observed.
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Magretohydrodynamic ( MHD ) studies’? have disclosed that driven magnetic
reconnection plays an essential role on the energy relaxation and the self-organization
of a magnetically confined plasma. Under the influence of a driving source and a small
amount of electrical resistivity, magnetic reconnection takes place in a time scale much
shorter than the resistive time scale and the reconnection rate is primarily determined by
the driving electric field.» This process can lead to fast energy conversion from the field
energy to the particle energy as well as a topological change of magnetic field.?=%) On
the other hand, energetically active phenomena? triggered by magnetic reconnection are
often observed in a high temperature, rarefied plasma in which binary collisions between
particles are negligible, namely, in a collisionless plasma. It is not so easy to explain how an
electric field along the equilibrium current is generated in the neutral sheet of collisionless
plasma. The concept of an anomalous resistivity®) which originates from the wave-particle
interaction or the stochasticity of particle orbit has been introduced to explain collisionless
reconnection. But this is not confirmed in a self-consistent manner. Leboeuf et al.®) and
Hewett et al.” have also examined the collisionless magnetic reconnection by means of
particle simulation. However, some of the assumptions done by them are not appropriate
for the analysis of driven magnetic reconnection. Especially, it is quite important to
describe the displacement current and a finite ion Larmor radius effect in the current
layer in a self-consistent manner, as will be shown in this paper. The purpose of this
letter is then to demonstrate the dynamical evolution of driven magnetic reconnection
in a collisionless plasma by means of particle simulation and to clarify the mechanism
leading to the excitation of driven magnetic reconnection and to the resultant fast energy
CONVErsion.

By solving the equations of motion and the Maxwell equations in a self-consistent
manner we examine the dynamical evolution of physical quantities in an open system.

Our code is two-and-one-half dimensional particle code which relies on the serni-implicit




method.®~10) Physical quantities are assumed to have a translational symmetry along
the z-axis in the Cartesian coordinates {z,y,z). As an initial condition we adopt one
dimensional Harris-type equilibrium with a magnetically neutral sheet along the mid-
horizontal line (y = 0) as

B.(y) = By, tanh(y/L), (1)

P(y) = Bj/8w sech’(y/L), (2)

where L is the scale height along the y-axis. Since both an ion and an electron are
loaded at the same spatial position, there should be no electric field in the initial profile.
Particle temperature is assumed to be spatially uniform and isotropic. In order to drive
magnetic reconnection at the center of simulation domain we adopt a free boundary
condition,® under which the plasma is smoothly supplied by an E x B drift from two
input boundaries ( ¥ = =%y, ), and the reconnected plasma can flow out smoothly through
two output boundaries ( z = %z, ). The ratio z/y, of the side lengths of the simulation
domain is fixed to 3 in this study. The driving electric field at the input boundaries
E(z,t) = (0,0, E..(z,t)) is initially zero and gradually increases until it reaches to a
constant value. The spatial profile of E..(z,?) is determined so that the input flow
velocity becomes maximum at the mid-point ( z = 0 ) of the input boundary. The
maximum input velocity is fixed to 0.5 of the initial average Alfven velocity v4. The total
number of particles used here is 240,000 and the ratio of ion to electron mass is 50. The
initial average ion Larmor radius is about 7.5 of a grid separation distance Ay along the
y-direction, which is smaller than the scale height of the current profile L(= 12.6Ay). The
collisionless skin depth &, ( = c/wpe ) is equal to Ay, where w,. is the average electron
plasma frequency.'’

Figure 1 shows five snapshots of magnetic flux contours (left) and vector plots of
the average ion velocity (right) where the top, the second, the third, the fourth and the

bottom panels correspond to the profiles at ¢ = 0, t = 0.56t4,t = 1.12¢4, t = 1.68{4 and



t = 2.24¢ 4, respectively. Here, timne is measured by the Alfven transit time tal= 2y, /va)
along the y-axis, and the magnetic flux contours less than the values at the mid-point (
z = 0, y = 0 ) are plotted by the dotted line. A magnetically neutral sheet exists along
the mid-horizontal line and no bulk ion flow is in the {z,y) plane at initial { top panel).
Time proceeds from the top to the bottom in this figure. Magnetic reconnection sets in
and an x-shaped structure of magnetic separatrix is formed at the period of ¢ = #,. The
region occupied by the reconnected flux spreads over the whole simulation domain at this
time. A fast directed flow arises from the x-point as a result of magnetic reconnection and
it carries the reconnected flux toward the open boundaries. One can find in the bottom
panel that the shock structure appears in the ion flow pattern.

Let us examine the reconnection process in more detail. Figures 2(a) and 2(b) show
(a) the time histories of the z-components of the average electron velocity ( solid line )
and the average ion velocity ( dotted line ), and (b) those of the y-components of the
electron thermal velocity ( solid line ) and the ion thermal velocity ( dotted line )} where
the average velocities are observed at the x-point, and the thermal velocities are observed
at the downstream side of the x-point. The equilibrium current is initially dominated by
the diamagnetic component. The converging plasma flow creates a peaked profile for the
mass density and current density as time goes on. Because the ions take a slightly broader
spatial distribution than that of electrons due to the finite ion Larmor radius effect, the
charge separation takes place along the density gradient and hence an electric field appears
in the y direction. The resultant E x B drift has the same sign as the electron diamagnetic
drift. Thus, the electron current becomes dominant over the ion current, as was shown
in Fig. 2(a). The ion thermal velocity increases slowly in the initial compression phase,
while the electron thermal velocity remains almost constant. As magnetic reconnection
sets in, the electron thermal velocity increases suddenly. This phenomenon suggests that

electron heating takes place actively through collisionless reconnection.




What is the trigger of magnetic reconnection in a collisionless plasma ? Figures 3(a)
and 3(b) show (a) the time histories of the half-width [, of the mass density profile ( solid
line ) and the ion Larmor radius A, ( dotted line ), and {b) those of the electron number
density ( solid line ) and the ion number density ( dotted line } at the x-point where the
ion Larmor radius is defined by using the ion thermal velocity in the current layer and
the magnetic field outside the current layer. In the vicinity of the magnetically neutral
sheet an ion executes a meandering motion!® with the orbit amplitude of I, = V/ipA,.
The ion motion is free from magnetic field in the inner region ( 7 < [, ) of the current
layer. The mass density profile has initially the width about two times larger than the
ion Larmor radius. The width [, decreases with time faster than the ion Larmor radius
A;. When [, becomes nearly equal to };, both [, and A; tend to change slowly with the
same rate. In other words, the current layer evolves slowly while keeping the width nearly
equal to the ion Larmor radius affer this period (£ > t4). This result is quite different
from that of the numerical simulation done by Hewett et al..” The number density at the
x-point begins to increase at t & 0.5¢4. Both the electron density and the ion density
increase with the same growth rate during the period of 0.5t4 <t < t4. After this period
the growth of the number density slows down and the electron density becomes dominant
over the ion density. Comparing Fig. 3(a) with Fig. 3(b), one can find that the charge
separation becomes distinct after the width of the current layer becomes nearly equal
to the ion Larmor radius. This phenomenon can be easily understood by the finite ion
Larmor radius effect in the vicinity of the neutral sheet. That'is, most of the ions in the
current layer become unmagnetized when {; = X,, while the electrons remain magnetized.
Therefore, the compression by the input flow does not work on the ions but only on the
electrons in the current layer. Consequently, the charge neutrality condition is violated
in the central region of the current layer after this period. Note that this period is in

good agreement with the starting time of magnetic reconnection and the width of the



current layer in the reconnection phase is much larger than that of the Rosenbluth sheath
(= (M./M)123,).10

Generation of electric field along the equilibrium current is needed for excitation of
magnetic reconnection. Figures 4(a) and 4(b) show (a) the z-component of the electric
field | E, | at the x-point versus time in the unit of the Alfven transit time and (b)
that of the current density | J, | at the x-point. Note that the electric field is plotted
in the logarithmic scale, while the current density is plotted in the linear scale. The
current density J, grows gradually in the compression time scale while the electric field
E. remains at the noise level until magnetic reconnection starts { ¢ < ¢4 ). The electric
field begins to grow as soon as magnetic reconnection sets in ( ¢ = ¢4 ). The inclination
of the growth curve becomes steeper as time goes on. The growth rate is estimated to be
5/ta in the first phase of reconnection and 20/t 4 in the later phase. It is worthy to note
that the growth time is roughly explained by the compression time scale t.(= 1, /(0.5v4))
of the current layer which is nearly equal to the traveling time of the thermal electron over
the charge separation zone along the z-axis. The generation of the electric field means
that the constant acceleration of the electrons in the current layer by the electric field is
requisite for keeping the equilibrium current. In other words, the electrons which carry
the equilibrium current are constantly supplied into and move away from the current
layer. Accordingly, the ratio of the electric field to the current density, which can be
interpreted as representing an effective resistivity, is roughly estimated by introducing a

correlation time.1?

If we take the compression time scale 1, /(0.5v,) as a correlation time,
the normalized effective resistivity 7 is estimated to 47rwce/w§etc =~ 3- 1073 in our case.
This value is in good agreement with the observed value { 1073 < 7,4, < 5- 1073 ).

Let us examine the mechanism that generates the neutral sheet electric field along

the equilibrium current and excites magnetic reconnection, in connection with the charge

separation in the central region of the current layer. The charge separation generates




the convergent electric field around the mid-point along the neutral sheet in the (z,y)
plane. The y-component of the electric field, E,, increases slowly while satisfying the force
balance with the dynamic compression for the electrons. On the other hand, there is no
such counter force in the z direction. Therefore, the convergent electric field resultantly
pushes the electrons in the central region of the neutral sheet away from the center in the
¢ direction, thus medifying the spatial distribution of the equilibrium current, the great
part of which is carried by electrons { see Fig. 2(a) ). The displacement current responds
quickly to this modification and works to keep the equilibrium current in the central region
of the neutral sheet. The neutral sheet electric field E, along the equilibrium current is
thus created by the displacement current. This can explain the observational fact that the
growth time of the E, field is roughly represented by the compression time scale I, /(0.5v,)
of the current layer and that the growth time is also equal to the traveling time of the
thermal electron over the charge separation zone.

From this consideration we can come to the conclusion that collisionless reconnection
is triggered under the influence of a converging driving flow and that a dc type electric
field leading to reconnection is created by the displacement current originated from the
finite ion Larmor radius effect, instead of the wave-particle interaction induced resistivity.

The E; field not only acts to accelerate electrons along the z-axis but also results in
reconnecting magnetic field lines. Consequently, the y-component of magnetic field B,
appears along the neutral sheet in accordance with the growth of the E, field. Figures
5(a) and 5(b) show (a) the spatial distribution of the y-component of the magnetic field
B, along the neutral sheet at ¢ = 2.02¢4 and (b) that of the electron temperature T,
where the electron temperature is estimated by assuming that the electron distribution
can be approximated by the shifted Maxwellian. The B, field grows on both sides of
the reconnection point along the mid-horizontal line. Electrons accelerated along the z

direction by the electric field E, are quickly trapped by the B, field and thus it appears



that the electrons are thermalized. Comparing Fig. 5(a) with Fig. 5(b), one can find that
the electron heating takes place most efficiently at the downstream side of the reconnection
point. This result is consistent with the observation that the electron thermal velocity at
the downstream side increases rapidly, say, by factor 5, as magnetic reconnection sets in (
Fig 2(b) ). In this way the energy conversion from the field energy to the particie energy
is realized through collisionless driven magnetic reconnection.

One of the authors (R.H.) is grateful to Professors W. Horton and T. Tajima for their

interests in this work.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Figure captions

Magnetic flux contours (left) and vector plots of average ion velocity (right) at
five different time periods where five panels correspond to the profiles at ¢ =

0, 0.56t4, 1.12¢4, 1.68t,, and t = 2.24¢ 4, respectively.

(a) Time histories of the z-components of average electron velocity { solid line
) and average ion velocity ( dotted line ) at the x-point, and (b) those of the
y-components of the electron thermal velocity ( solid line ) and the ion thermal
velocity ( dotted line ) at the downstream side of the x-point where the thermal
velocities are plotted in the logarithmic scale and the average velocities are plotted

in the linear scale.

(a) Time histories of the half-width I, of the mass density profile ( solid line ) and
the ion Larmor radius A, ( dotted line ), and (b) those of the electron number
density ( solid line ) and the ion number density ( dotted line ) at the x-point
where the ion Larmor radius is defined by using the ion thermal velocity in the

current layer and the magnetic field outside the current layer.

(a) The z-component of the electric field | E, | at the x-point versus the time
normalized by the Alfven transit time and (b) that of the current density | J, |.
Notice that the electric field is plotted in the logarithmic scale while the current

density is plotted in the linear scale.

(a) Spatial distribution of the y-component of magnetic field B, along the neutral

sheet at £ = 2.02¢4 and (b) that of the electron temperature 7..
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