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Abstract

The energy relaxation process of a spheromak plasma in a flux conserver is in-
vestigated by means of a three-dimensional magnetohydrodynamic simulasion. The
resistive decay of an initial force-free profile brings the spheromak plasma to an
m = 1/n = 2 ideal kink unstable region. It is found that the energy relaxation
takes place in two steps; namely, the relaxation comsists of two physically distin-
guished phases, and there exists an intermediate phase in between, during which
the relaxation becomes inactive temporarily. The first relaxation corresponds to the
transition from an axially symmetric force-free state to a helically symmetric one
with an n = 2 crescent magnetic island structure viz the helical kink instability.
The n = 2 helical structure is nonlinearly sustained in the intezmediate phase. The
helical twisting of the flax tube creates a recomnection current in the vicinity of
the geometrical axis. The second relaxation is triggered by the rapid growth of the
n = 1 mode when the reconnection current exceeds a critical value. The helical
twisting relaxes through magnetic reconnection toward an axially symmetric force-
free state. It is also found that the poloidal flux reduces during the helical twisting
in the first relaxation and the gemeration of the toroidal flux occurs through the

magnetic reconnection process in the second relaxation.

Keywords; spheromak, stepwise relaxation, magnetic reconnection, rumerical simula-

tion, magnetohydrodynamics



I. Introduction

The energy relaxation process in the plasma system with two different time scales is
an attractive topic not only from the standpoint of the controlled nuclear fusion but also
from the standpoint of nonlinear plasma physics. For instance, a magnetically confined
magnetohydrodynamic (MED) plasma self-organizes to the minimum energy state in the
system where two physical processes are operative, i.e., driven magnetic reconnection as
a fast process and resistive diffusion as a slow process.!’ Both the topological change of a
global magnetic confinement configuration and the dissipation of ar excess free magnetic
energy, which can take place only in the resistive medium, are brouhgt about by the driven
reconnection in a fast time scale comparable to the MAD time scale.’? The sawtooth
oscillation in the tokamak plasma is also another relaxation phenomenon in which two
phenomena with different time scales, i.e., the slow ramp-up and the fast crash, take place
reciprocally.®)

The spheromak configuration is one of the compact tori in which the poloidal and
toroidal fields are sustained by the internal plasma current. It is widely known that the
minimum energy state in the low-beta plasma is the force-free state with a constant co-
efficient, what is called the Taylor state*). The experimentally formed spheromak plasma
has the configuration very close to the Taylor state.®) If the resistivity, however, has a
spatial dependence, the current profile is modified in the resistive diffusion time scale and
thus the plasma gradually leaves from the Taylor state. The deviation from the minimum
energy stale makes the system unstable and excites a kind of relaxation instability.

There are two kinds of dangerous instabilities in the spheromak plasma. The first one
is a global MHD instability such as shift or tilt mode which occurs in the free boundary
case.®») These modes are found to be stabilized by confining the plasma in the oblate
flux conserver.9"®) The second one is a telaxation instability in a flux conserver, which

takes place as a result of resistive decay of an initial stable profile. The stepwise decay

— 2 —



of the magnetic field strength was often observed in the relaxation instability.®»'® From
the analysis of the experimental data® and the numerical studies'**?>1%) the stepwise
relaxation is believed to be triggered by the excitation of the n = 2 1deal kink mode when
the stable profile with a minimum energy changes to a low ¢ profile of ¢ < 0.5, where n
is a toroidal mode number and g is the safety factor.

Sygro et al.!? have examined the stepwise relaxation by using a 2D transport code
for a current peaking phase and a 3D nonlinear MHD code for a dynamical evolution
phase. They found that a nonlinear saturation state appeared after the excitation of the
n = 2 kink mode and that the axisymmetric force-free state was realized again through the
experience of this intermediate state. Katayama and Katsurai*?, and Ono and Katsurai'®
have also examined the relaxation process in spheromak plasmas with a high ¢ profile and
a low ¢ profile by means of the MHD simulation. They introduced several assumptions
and numerical techniques to obtain a numerically stable solution, but some of them were
not appropriate for an analysis of the stepwise relaxation phenomenon. Especially, as will
be discussed in this paper, it is quite important to describe the magnetic reconnection
process with a sufficiently high accuracy in the vicinity of the geometrical axis in revealing
the physical process in a self-consistent way.

In order to improve the numerical accuracy we developed a new numerical scheme
which relies on the explicit finite-difference method with fourth-order accuracy both in
space and time.'*) This scheme enables us to simulate a physical phenomenon over the

resistive diffusion time scale with a sufficiently high accuracy by reducing to a much
lower level the accumulation of the numerical error which comes from the finite-difference
method. This scheme has succeeded in describing several nonlinear phenomena in the
fusion plasmal®'® and space plasma.’®

The purpose of this paper is to examine the whole relaxation process from an initial

current peaking phase through the final forcefree state by using the three-dimensional



full MHED simulation and to clarify the physical mechanism of the stepwise relaxation in a
spheromak plasma. For this we restrict the discussion to the relaxation phenomenon in a
spheromak plasma with a low ¢ profile which is considered to show the stepwise relaxation
as a result of the resistive decay. The initial condition and the simulation model are
described in Sec. IL Section III is devoted to discussions on a new physical picture of the
stepwise relaxation based on the detailed analysis of the results obtained from the MHAD
simulation and to comparisons with experimental results and other numerical simulation
results. Finally we give a summary of this paper and a brief discussion on the applicability

of the model in Sec. IV.

I1. Simulation model

We study the relaxation process of a low-beta spheromak plasma in a flux conserver
by making use of three-dimensional MID simulation. The numerical scheme used for sim-
ulation relies on the explicit finite-difference method with fourth-order accuracy both in

space and time.!? The equations to be solved are the resistive, nonlinear MHD equations

gg = V- (o), (1)
%F = _V-(Fv)—Vp + jxB, 2)
%’.:vx(va-m), (3)
%’3 = —V-(pv) + (y=1) (-pV-v+7j-J), (4)

where
j = VxB, (5)

and F(= pv) is the mass flux density, p is the thermal pressure, p is the matter density, v
is the matter velocity, B is the magnetic field, j is the current density, 7 is the electrical

resistivity, and y(= 5/3) is the ratio of specific heats.
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The shape of the flux conserver is assumed to be an ellipsoid of revolution with the
aspect ratio of z;./rs. = 0.6 in the cylindrical coordinates (r, ¢, z), where the symmetric
axis is taken to be along the z axis, z;, is the half length along the z axis, and ry. is the
radius in the midplane ( z = 0). We adopt the configuration of the CTCC-I device”
as a simulation model. The oblate shape plays a role in protecting the plasma from
disruptive growing of the external tilt mode.®»™®) The simulation domain is implemented
on a (75 x 16 x 91) point grid with fixed separations (Ar, Ag, Az) in the cylindrical
coordinates. The boundary condition to be imposed is such that B-n = 0, j xn = 0,
and v = 0 on the conducting wall, where n is the unit vector normal to the boundary
surface. Because there are no spatial grids on the boundary surface in general, we impose
the boundary condition on the spatial grids located one grid space (Ar or Az ) inside
from the boundary surface. This replacement is equivalent to the modification of the
boundary shape.

In order to obtain the initial condition we solve two-dimensional Grad-Shafranov equa-

tion mumerically!” by assuming the poloidal current and thermal pressure profiles as

I(¥) = e, (6)
p(¥) = p¥, (7)

where
v = (¢h - '(,b(’f', z))/("l’h - ¢0)» (8)

(r, z) is the poloidal flux function, y is the value at a magnetic axis, 1y, is the value at a
plasma-vacuum boundary, o and § are constant parameters. Figure 1 shows the contour
plots of the poloidal flux function for the case where there is 0.1 of the total poloidal flux
in the vacuum region ( ¥4/ = 0.1), @ = 1.1 and pp = 0. The solution is chosen so
that the magnetic separatrix coincides with the ellipsoidal boundary and the safety factor

on the magnetic axis guz;, is a little larger than 0.5 to keep the system stable against the
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m = 1/n = 2 kink instability. Here m and n are the poloidal and toroidal mode numbers,
respectively. This solution is not exactly equal, but very close, to the Taylor state with
the minimum energy, which is given by setting pg = 0 and a = 1.0.

We consider two types of resistivity with spatially hollow profiles , both of which are

described by the following relation

?7(7’; z) =1 + (ﬁp“‘ﬁri)[ 3X? — 2Xx° ]: (9)

where X(r, z) is the function satisfying the relation 0 < X < 1, 5, and np{< 1,) are the
values of the resistivily in the vacuum region { X =0 ) and at the plasma center ( X = 1
), respectively. The functional dependence of 7 is determired so that the gradient vanishes
both in the vacuum region and at the plasma center. It is reasonable to assume that the
resistivity has a relatively smaller value in the hot central region compared with that in
the cold periphery region. The first type corresponds to the torus profile case when the
function X{(r, z) is given by j4/74maes ( jg(r;2) is the ¢ component of the initial current

density and jg me. is its maximum value ). The second type corresponds to the ellipsoid

profile case where the function X(r,z) is equal to \/1 —{(r/rsc)? + (2/2:.)%}. Figure 2
shows the spatial distribution of the resistivity in the poloidal plane for the torus profile
case (top} and that for the ellipsoid profile case {bottom). The resistivity profile is fixed
to the initial one throughout the simulation ran because it is very difficult to obtain the
resistivity profile corresponding to the temporal change of the physical parameters. The
perturbations of the velocity field are assigned by random numbers on each grid point,

the maximum amplitude of which is equal to 107° of the average Alfven velocity vag.

IT11. Simulation Results

Four simulation runs are carried out under the assumption that the plasma pressure is

negligibly small { p < B - B ) and the matter density is spatially uniform. The simulation
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parameters are listed in Table 1, where the period and the resistivity are normalized by the
Alfven transit time (= r4./v40) and rs.va0, respectively. The simulation run starts from
the force-free equilibrium of g..;; = 0.524 and is terminated after the duration of 150t for
Case A. The simulation runs B, C and D are carried out to examine the dependence on the
spatial profile of the resistivity and the dependence on the toroidal mode number where
the simulation data at ¢ = 80f, for Case A is used as an initial data. We devote ourselves

to the analysis of the simmlation result for Case A in the following unless otherwise stated.

1. Stepwise relaxation

Figure 3 shows the temporal evolutions of the total magnetic energy ( solid line ),
the n = 2 mode amplitudes of the magnetic field { dashed line ) and the flow velocity
( dotted line ) where these quantities are normalized by their maximum values. There
are two peaks in the mode curve of the flow velocity while there is one trapezcidal hill in
the mode curve of the magnetic field. The energy relaxation takes place stepwise at the
periods corresponding to the peaks of the n = 2 flow mode. Let us analyze the stepwise
relaxation phenomenon by separating the temporal evolution into four typical phases, i.e.,
the linear phase, the first relaxation phase, the nonlinear saturation phase and the second
relaxation phase. Both the n = 2 flow mode and the n = 2 magnetic field mode grow
with the same growth rate in the linear phase where the mode amplitude of the perturbed
field is much smaller than the unperturbed magnetic field { 23t4 < t < 80¢4 ). In the
first relaxation phase the growth curve of the n = 2 flow mode attains the first peak
and the resultant deformation of the equilibrium profile leads to rapid dissipation of the
magnetic energy { 80f4 < t < 100¢, ). In the nonlinear saturation phase which follows
the first relaxation phase the mass flow energy is relaxed to some lower level, while the
n=2 structure of the magnetic field is nonlinearly sustained ( 100t4 < ¢ < 120¢4 ). The

n=2 magnetic energy rapidly dissipates and the n=2 flow mode grows to the maximum



level in the second relaxation phase ( 120f, < t < 140t ).

Let us then examine the behaviors of physical quantities in the linear phase in detail.
Because the resistivity has a larger value in the periphery region than that in the central
region, the resistive diffusion proceeds so that the toroidal current concentrates in the
vicinity of the magnetic axis. The peaking of the toroidal current results directly in the
decrease of the safety factor. Figure 4 shows the temporal evolutions of g, (solid line),
and the mode amplitudes of the n = 1 mode {dashed line), the n = 2 mode (dotted
line), and the n = 3 mode (dot-dashed line) where the mode amplitude is plotted in the
logarithmic scale attached to the left vertical axis, while the safety factor is plotted in a
linear scale attached to the right vertical axis. The value of g,.;, decreases monotonously
with time until it reaches the minimum value of q,.;, = 0.438 at ¢ = 79¢,. The magnetic
configuration changes in the resistive diffusion time scale determined by the vacuum re-
sistivity in the linear phase. Nofice in Fig. 4 that the n = 2 mode starts to grow soon
after ¢,.:, decreases below 0.5, while both the n = 1 mode and the n = 3 mode remain
almost unchanged. This indicates the fact that the m = 1/n = 2 ideal kink instability
is triggered at the period (¢ = 23¢,) when the field configuration satisfies the condition
g(r, z) < 0.5 everywhere. The growth rate of the kink instability is estimated to be nearly
equal to 0.13/%4 from the inclination of the growth curve.

The safety factor g,.;, begins to increase after it reaches the minimum value (t>
80t4 ). The growth rate of the kink mode becomes smaller as the system approaches
the nonlinear state. Let us examine the behavior of the n = 2 mode in the nonlinear
phase. The Poincaré plots of magnetic field lines on the poloidal plane ( ¢ = 0 ) are
_ displayed in Figure 5 at six different times where six panels correspond to the Poincaré
plots at ¢ = 0, 90¢4, 105,, 115t,, 120¢4, and 135¢,, respectively. The m = I/n=2
plasma flow created by the instability gradually modifies the magnetic surface so that

the location of the magnetic axis is helically shifted from the axially symmetric point (



{ = 90t ). The magnetic islands appear around the magnetic axis as a result of nonlinear
mode coupling. Further deformation leads to overlapping of the magnetic islands which
changes the ordered magnetic structure with nicely nested magnetic surfaces to the chaotic
one ( t = 105{,). The remaining magnetic surfaces tend to deform into crescent shapes
as the magnetic axis approaches the periphery region. In this process the hot core plasma
is carried from the central region to the cold periphery region with a relatively large
resistivity. This movement results in rapid dissipation of the magnetic energy in the first
relaxation phase. The dynamical deformation is stopped because the n = 2 flow mode
ceases to grow and decays to some lower level at this stage. On the other hand, the n =2
helical structure of the magnetic field shown in Fig. 5 is quasi-stationarily sustained in
the duration of about 20 £,. This corresponds to the fact that the n = 2 mode of the
magnetic field keeps its amplitude almost unchanged in the nonlinear phase ( see Fig. 3 ).
As soon as the second relaxation starts, a new magnetic axis appears in the chaotic region
(t = 120t,). This is because the high m modes in the chaotic region dissipates rapidly
and the low m structure appears. While increasing the area of the new well-organized
magnetic surface, the magnetic axis moves toward the axially symmetric position. This
implies that the n = 2 mode of the magnetic field decays at this stage. In this way the
axisymmetric profile is realized again in the plasma after the stepwise relaxation.

The second relaxation is followed by the topological change of the magnetic field from
the n = 2 helical configuration to the axisymmetric configuration. The fopological change
is completed by the operation of magnetic reconnection in the MHD plasma. In order to
clarify the transition mechanism, let us examine the three-dimensional structure of the
magnetic field line. Figure 6 shows three-dimensional display of the magnetic field line
at t = 0 (left-top), ¢ = 90t 4 (left-bottom), ¢ = 100t4 (right-top) and ¢ = 135t4 (right-
bottom). The initial axisymmetric configuration is gradually deformed by the growth of

the m = I/n = 2 helical kink mode ( ¢ = 90t ). The deformation proceeds in such a



way that the flux tube is helically twisted as a whole ( ¢ = 100¢, ). The helical twisting
concentrates the magnetic flux in the vicinity of the geometrical axis ( » = 0 ). Because
the magnetic field on one side of the twisted tube contacts obliquely with that on the
opposite side at the geometrical axis, the reconnection current along the z axis is formed
at the contact point. Figure 7 shows the temporal evolution of the radial distribution of
the current density where the height along the vertical axis represents the value of the
current density along the —z axis ( ~j, ). The current profile is not so largely changed
from the equilibrium profile during the linear phase of the kink instability ( ¢ < 80¢, )-
The negative current is observed to form and grow in the vicinity of the geometrical axis
as the helical twisting becomes tighter in the nonlinear phase. The absolute value of the
current density at the geometrical axis becomes maximum at ¢ ~ 120¢,. It is worthy
to note that this period coincides with the time when the second relaxation starts. In
other word, the second relaxation starts when the reconnection current created by the
helical twisting of the flux tube becomes larger than a critical value. The reconnection
process of the magnetic field lines brings the system to an axisymmetric state, as was
seen in the right-bottom panel of Fig. 6. It is concluded that the second relaxation is
the transition from the n = 2 helical state to the axisymmetric state through the driven
magnetic reconnection.?)

According to Taylor’s hypothesis® the minimum energy state is the force-free state
with a spatially uniform coefficient A(= (j- B)/(B-B)). From this standpoint let us
examine the behavior of the spatial distribution of the coefficient X in the relaxation
process. Figure 8 shows the perspective diagrams of the distribution of A in the (r, z)
plane at £ = 0, t = 80¢4, t = 120t 4, and £ = 150¢, for Case A where the height along the
vertical axis normal to the (r, z) plane represents the value of ) averaged over the toroidal
angle, and both the distributions in the vicinity of the geometrical axis (left side of each

panel} and near the boundary surface are excluded from the figure for clarity. The initial



distribution is approximately spatially flat except the periphery region, i.e., this profile
is very close to the force-free one with a minimum energy. As time elapses, the spatial
distribution with a peak in the plasma center is gradually formed in accordance with the
current peaking ( ¢ = 80t4 ). The nonlinear growth of the kink instability smooths out
the peaked distribution and thus a spatially flat distribution is realized at { = 120f4.
That is, the kink instability plays a role to adjust the deviation of the magnetic profile
created by the resistive process to the force-free one with a minimum energy. Because the
resistivity is fixed to be spatially hollow, the peaked distribution grows up again after the

second relaxation takes place { ¢ = 150{, ).

2. Flux conversion

As was shown above, the relaxation mechanism in the second relaxation phase is quite
different from that in the first relaxation phase. The temporal behaviors of the toroidal
magnetic flux and the poloidal magnetic flux exhibit a typical difference between the first
relaxation and the second relaxation. Figure 9 shows (a) the temporal evolutions of the
total toroidal flux (solid line) and the total poloidal flux (dotted line), and (b) that of
the ratio of the negative toroidal flux to the fotal toroidal fiux where the flux curves are
drawn in a normalized unit. The total poloidal flux begins to decrease just after the
first relaxation starts ( ¢ > 80t, ), while the total toroidal flux remains almost constant
until the second relaxation starts { ¢ > 1204 ). The negative toroidal flux grows in the

' nonlinear saturation phase ( 80f4 < t < 120t4 ) and dissipates rapidly as soon as the
system comes into the second relaxation phase. Both of the growth curves become flat
after the second relaxation. The similar result was derived for the low ¢ simulation carried
out by Katayama and Katsurai.’?)

There are two mechanisms that can lead to decrease in the total poloidal flux. The

first one is the resistive dissipation. The poloidal field is distributed with a peak at



an intermediate plasma region while the toroidal field is distributed with a peak at the
magnetic axis. Since the resistivity has a hollow profile, the plasma movement toward the
conducting wall in the first relaxation leads mainly to resistive dissipation of the poloidal
field. The second mechanism is the conversion of the poloidal flux to the toroidal flux via
magnetic reconnection.

Let us consider the conversion mechanism by using a schematic model illustrated in
Fig. 10. Suppose that two poloidal flux tubes which are located symmetrically around the
z axis is forced to deform by the n = 2 helical twisting (top panel). The helical twist force
lays down the poloidal flux tubes on the plane perpendicular to the z axis in such a way
that the directions of the magnetic field lines across the z axis become opposite to each
other. This process corresponds to the first relaxation. Since the lying tubes do not have
any poloidal flux, the total poloidal flux decreases as a consequence of the helical twisting
in the first relaxation. The lying tubes form a reconnection current along the —z axis, as is
seen in the middle panel of Fig. 10. It is important to note that the negative toroidal field
appears in the vicinity of the z axis while a net amount of the toroidal flux is unchanged
at this stage. This can explain the simulation result that the total toroidal flux remains
almost constant until the second relaxation starts in spite of the increase of the negative
toroidal flux { see Fig. 9). In the second relaxation phase magnetic reconnection takes
place at the z axis and it combines two lying flux tubes into one toroidal flux tube which
has a net toroidal flux. This process leads not only to elimination of the negative toroidal
flux component, but also to the increase of the total amount of the total toroidal flux. In
this way the behaviors of the poloidal flux and the toroidal flux can be explained without
any inconsistency by this simple model illustrated in Fig. 10. Thus, it is concluded that
the flux conversion of the poloidal flux to the toroidal flux is realized through successive
operations of two processes i.e., helical twisting in the first relaxation phase and magnetic

reconnection in the second relaxation phase.



3. Resistivity profile

We have carried out the simulation run by assuming that the resistivity profile is
independent of time for Case A. It is natural to expect that the spatial profile of the
resistivity is largely altered in the nonlinear phase because the flow created by the kink
instability carries the hot plasma in the central region to the periphery region. This
change may affect the behaviors of the physical quantities in the relaxation process. In
order to check this effect we carry out anpther simulation run in which the resistivity
with an ellipsoid profile is used ( see Fig. 2-b ). The parameters are listed in Case B of
Table 1. Note that the resistivity profile in the vicinity of the geometrical axis is most
significantly changed from that for Case A. This simulation starts from the simulation
data at ¢ = 80t4 for Case A and is terminated at ¢ = 150¢ 4. The results are displayed in
Figure 11 where the solid, dashed and dotted lines represent the temporal evolutions of
the total energy, the n = 2 mode amplitudes of the magnetic field and the flow velocity,
respectively. Let us compare the results with those shown in Fig. 3. Because the kink
instability is an ideal process caused only by the spatial structure of the magnetic field,
the first relaxation is hardly affected by the change of the resistivity profile. The duration
of the nonlinear saturation phase becomes longer and the start of the second relaxation is
delayed. Remind the fact that the second relaxation starts when the recomnection current
created by the helical twisting becomes larger than a critical value. This indicates that
the formation of the reconnection current in the vicinity of the geometrical axis is the
resistive process and thus more time is necessary for the reconnection current to grow to

the critical value for Case B.

4. Dependence on the toroidal mode

Ml 4 3 $1 1
The reconnection process plays a key role on the fransition from the helically sym-
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metric state to the axially symmetric state in the second relaxation phase. Incidentally



we observe that the n =1 and n = 3 modes grow rapidly near the geometrical axis just
before the second relaxation starts. The same phenomenon was observed in the CTCC-I
experiment.®) In order to clarify the relation between the reconnection process and these
modes we carry out two simulation rums, i.e., Case C where the n = 3 mode is excluded
from the simulation and Case D where the » = 1 mode is excluded from the simula-
tion. Though the simulation code used is not the Fourier code, we carry out the Fourier
transformation of the simulation data once each 10 time-steps ( = 0.04¢4 ) and reset the
amplitude of the assigned mode equal to zero. These simulation runs start with the data
at t = 80¢, for Case A. Figure 12 shows the temporal evolution of the kinetic energy for
Case A (solid line), Case C (dotted line) and Case D (dashed line) where the amplitude is
normalized by the maximum value of all. The kinetic energy in the first relaxation phase
evolves in the same way for three cases. This is due to the fact that the first relaxation
is caused by the growth of the n = 2 ideal kink mode and the n = 1 and n = 3 modes do
not play any role on the first relaxation phenomenon, as was seen in Fig. 4. On the other
hand, the second relaxation reveals a quiie different feature, i.e., there is not any clear
peak of the kinetic energy for Case D while the kinetic energy for Case C behaves in the
same way as for Case A. In other words, there is not any clear period corresponding to
the second relaxation phase in the simulation run without the n = 1 mode. This suggests
that the existence of the n = 1 mode is necessary for the complete performance of the
second relaxation which is controlled by magnetic reconnection.

Figure 13 shows the temporal evolution of the current density at the geometrical axis
for the same cases as Fig. 12. The reconnection current increases gradually as a result of
the helical twisting of the flux tube in the nonlinear saturation phase ( 100, < t < 120¢,
). For Cases A and C we can observe an evidence that the second relaxation starts at
the period ( ¢t = 120, } when the reconnection current reaches a critical value. The

energy stored in the twisted flux tube is released through magnetic reconnection and



it forms the second peak of the kinetic energy, as was seen in Fig. 12. Consequently,
the current density at the geometrical axis decreases as the second relaxation proceeds (
120t < t < 140t4 ). On the other hand, the reconnection current for Case D continues to
increase after it reaches a critical value for Cases A and C. That is, there appears neither .
the decrease of the current density at the geometrical axis nor the rapid growth of the
kinetic energy showing the efficient operation of magnetic reconnection for the simulation
run without the n = 1 mode.

Let us consider the role of the n = 1 mode on the magnetic reconnection process in
the second relaxation. First, remind the mathematical condition that each component of
a vector has the structure described by only a toroidal mode at the geometrical axis in the
cylindrical coordinates , i.c., the axial component has the n = 0 structure while the radial
and azimuthal components have the n = 1 structure. The n = 2 helical twisting does not
lead to the formation of the magnetic field or the current density with the n = 1 structure
because of its #» = 2 symmetry. Thus, both the magnetic field and the current density
have only an axial component with the n = 0 structure on the axis. In other words, the
profile satisfying the force-free condition J x B = @ is formed at the geometrical axis as
a result of the helical twisting. Figure 14 shows the temporal evolution of the force-free
parameter A;; for Case C where three panels show the perspective views of the parameter
X (=3-B/ | T || B|)in the upper half ( z > 0) of the poloidal cross-section at
t = 80t4 (top), t = 120t4 (middle), and ¢ = 150f4 (bottom), respectively. Though the
whole system is slowly modified from the initial equilibrium, the magnetic field continues
to have a configuration very close to the force-free one of As; = 1 duzing the linear phase
(top). The helical twisting of the flux tube in the nonlinear phase creates another force-
free configuration of A;; = —1 in the vicinity of the geometrical axis (middle). It is
important to note that there exist two different force-free states in the nonlinear phase

simultaneously. The force-free state of A;; = —1 disappears after the second relaxation



phase (bottom). This phenomenon corresponds to the disappearance of the reconnection
current sustaining the reversed field. There are two processes through which the current
profile is changed in the MHD plasma, i.e., the diffusion process and the reconnection
process. The diffusion of the magnetic field takes place in the resistive time scale which
is much longer than an MHD time scale. In the reconnection process the magnetic flux is
carried away from the reconnection point by the dynamical flow created by the J x B force
and hence the current profile is changed in the short time scale comparable to the MHD
time scale. The intermediate state of 1 > Agy > —1, in which the relation J x B 5 0
holds, is required for the transition from the A;; = —1 state to the A;; = 1 state in a short
time scale. It is clear that the n = 1 mode is necessary to describe the | A;; |# 1 state at
the geometrical axis. Therefore, it is concluded that magnetic reconnection in the second
relaxation is completely performed by the existence of the n = 1 mode with a sufficiently
large amplitude. The n = 3 mode grows as a result of the nonlinear coupling between
the n = 1 mode and the n = 2 mode, but this mode does not play any essential tole
on the reconnection process. These conclusions are quite different from the results of the

numerical simulation carried out by Sygro et al.'?, or that done by Ono and Katsurai.!?)

IV. Summary and Discussions

We have examined the whole relaxation process of a spheromak plasma in a flux con-
server from an initial current peaking phase through the final force-free state by making
use of the three-dimensional full MHD simulation and have clarified the physical mecha-
nism of the stepwise relaxation. The main results are summarized as follows:

(1) The current peaking near the magnetic axis proceeds in the resistive time scale
due to the hollow resistivity profile. When an initial force-free profile changes to a low ¢
profile of ¢ < 0.5, the stepwise relaxation of the magnetic energy is triggered by excitation

of the m = 1/n = 2 ideal kink mode. The stepwise relaxation consists of four temporal



phases, i.e., the linear phase, the first relaxation phase , the nonlinear saturation phase,
and the second relaxation phase.

(2) In the linear phase both the n = 2 flow mode and the n = 2 magnetic field mode
created by the helical kink instability grow with the same rate which is nearly equal to
0.13/t4. As the amplitude of the n = 2 kink mode increases, the magnetic flux tube is
helically deformed in such a way that one twists a candy wrapper. The flow created by the
helical kink instability carries the hot plasma in the central region to the periphery region
with a relatively large resistivity. Therefore, this movement results in a rapid dissipation
of magnetic energy in the first relaxation phase.

(3) The n = 2 helical structure is nonlinearly sustained for a while after the growth
of the helical kink instability is stopped. The magnetic island surrounding the magnetic
axis is deformed in a fairly crescent shape. The helical twisting of the flux tube forms
the reconnection current at the contact point which is located on the geometrical axis.
The reconnection current develops gradually to create a reversed toroidal field near the
geometrical axis. This period corresponds to the nonlinear saturation phase.

(4) When the reconnection current becomes larger than a critical value, magnetic
reconnection takes place at the geometrical axis and the dynamical flow created by the
J x B force carries away the reconnected magnetic flux from the reconnection point.
Consequently, the helical twisting is relaxed and the axially symmetric force-free state is
realized again in the plasma. This is the second relaxation. This process requires the
existence of n = 1 mode with a sufficiently large amplitude.

(5) The flux conversion from the poloidal flux to the toroidal flux is realized through
the two processes of helical twisting in the first relaxation and magnetic reconnection in
the second relaxation.

(6) The resistivity dependence of the relaxation phenomena is also examined by chang-

ing the spatial distribution of the resistivity. It is found that the duration of the nonlinear



saturation phase becomes longer and the start of the second relaxation is delayed when the
simulation is cartied out for the resistivity profile with a smaller value near the geometrical
axis.

In this paper we made several assumptions to examine the whole process of the step-
wise relaxation by the three-dimensional full MHD simulation code with a fourth-order
accuracy. Before concluding this paper, let us discuss the plausibility of these assump-
tions.

The resistivity profile was assumed to be independent of time. The resistivity plays
three important roles on the stepwise relaxation. The first role is to change the stable
force-free configuration to an unstable configuration against the kink mode through the
peaking of the current profile. The second one is to cause the rapid dissipation of magnetic
energy in the first relaxation phase. These phenomena are caused essentially by the hollow
spatial profile in which the resistivity at the periphery is larger than that in the center
region. The third role is to change magnetic topology through magnetic reconnection.
The reconnection rate is almost independent of the absolute value of the resistivity for
the driven reconnection.?’ However, the formation speed of the reconnection current in
the nonlinear saturation phase depends on the resistivity near the geometrical axis, as was
seen in Sec. III-3. Therefore, it is plausible that the temporal change of the resistivity
profile exerts influence on the phenomena in the nonlinear saturation phase. This result is
considered to correspond to the experimental fact that the saturation of the n = 2 mode
was not observed in the late phase of the discharge.®)

We started the simulation from an equilibrium profile which was close to the critical
profile of gz, = 0.5. The purpose of this paper is to examine the whole process of the
stepwise relaxation in the system with two different time scales, i.e., the MID time scale
and the resistive diffusion time scale, by means of the full MED simulation code. For this

we need to carry out the simulation over a large number of time steps. Especially, the




initial current peaking phase and the growing phase of a perturbation from a numerical
noise level to a nonlinear level are the major parts. Because the accumulation of numerical
error increases in proportion to the number of time-steps, the total number of time-steps
should be kept less than a permissible value. The number of time-steps to obtain a
physically reliable simulation data is restricted within several tens of thousands when the
MHD simulation code with fourth-order accuracy is used. The physical period of 150t
corresponds to about forty thousand time-steps for the case of the MHD simulation code
used in this paper. There are two ways to reduce the number of time-steps without losing
the reliability. The first way is to make the value of resistivity larger and to contract
the difference between the resistive time scale and the MHD time scale. This method
sometimes makes it impossible to identify a physical process controlling the phenomenon
among various processes with different time scales. Thus, we did not use this way. Instead
of this, we relied on the second way by which we exclude part of the natural phenomena,
which is not essential to clarify the physical process, from the simulation and to shorten
the physical time of the simulation. In the real experiment® the initial gu.i, is close to
0.6. However, based on our premise that the current peaking phase from gazis = 0.6 to
Gazis = 0.5 must be controlled by the same mechanism as that from gu.is = 0.524 to
Jazis = 0.5 is, we adopted the initial equilibrium profile with ¢us:, = 0.524 rather than

0.6.
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Table 1: Simulation parameters

case  type period Tp My mode

torus 0<t<150 2-107% 1-.107¢ no

A

B ellipsoid 80<t<150 2-10°¢ 1-107* 1o
C torus  80<t< 150 2-107% 1-107* n=3
D

torus 80<t< 150 2-107° 1-107%t n=1

Table caption

Table 1. Simulation parameters. The columns of "type” and "mode” show the type of the
resistivity profile defined by Eq. (9) and the toroidal mode number excluded from
the simulation, respectively. The column of "period” represents the simulation

period in the unit of the Alfven transit time.
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Figure captions

. Contour map of the poloidal flux function in the poloidal plane for two-dimensional

equilibrium solution when there is 0.1 of the total poloidal flux in the vacuum

region (/1 = 0.1),@ = 1Llandp = 0.

. {a) Spatial distribation of the resistivity in the poloidal plane for the torus profile

case and (b) that for the ellipsoid profile case.

. Temporal evolutions of the total magnetic energy ( solid line ), the n = 2 mode

amplitudes of the magnetic field ( dashed line ) and the flow velocity ( dotted line

) for Case A where these quantities are normalized by their maximum values.

. Temporal evolutions of g, (solid line), and the mode amplitudes of the n = 1

mode {dashed line), the n = 2 mode (dotted line), and the n = 3 mode (dot-
dashed line) for Case A where the mode amplitude is plotted in the logarithmic
scale attached to the left vertical axis, while the safety factor is plotted in a linear

scale attached to the right vertical axis.

. The Poincaré plots of magnetic field on the poloidal plane ( ¢ = 0) at six dif-

ferent times for Case A where six panels correspond to the Poincaré plots at

t =10, 90t,, 1054, 115t4, 120f4, and 135i4, respectively.

. Three-dimensional display of the magnetic field line at ¢ = 0 (left-top), £ = 90t

(left-bottom), t = 100t 4 (right-top) and ¢ = 135¢4 (xight-bottom) for Case A.

. Temporal evolution of the radial distribution of the current density for Case A

where the height along the vertical axis represents the value of the current density

along the —z axis { —j, )-

. Perspective diagrams of A in the {r,z) plane at ¢ = 0, 1 = 804, t = 1204, and

¢ = 150t 4 for Case A where the height along the vertical axis normal to the (r, z)



plane represents the value of A averaged over the toroidal angle.

Fig. 9. (a} Temporal evolutions of the total toroidal flux (solid line) and the total poloidal
flux (dotted line}), (b) that of the ratio of the negative toroidal flux to the total

toroidal flux, where the flux curves are drawn in a normalized unit.

Fig. 10. Schematic diagram of flux conversion mechanism. (1) Two poloidal flux tubes are
located symmetrically around the z axis. In the first relaxation the . = 2 helical
twisting Tays down the poloidal flux tubes on the plane perpendicular to the z
axis. (2) The reconnection current along the negative z axis is formed and the
poloidal flux becomes zero. The torcidal field appears locally, but a net amount
of the toroidal flux is zero at this stage. Magnetic reconnection takes place at
the z axis in the second relaxation. (3) Consequently, two lying flux tubes are

combined into one toroidal flux tube which has a net toroidal flux.

Fig. 11. Same figure as Fig. 3 for Case B where the resistivity with an eilipsoid profile is

used.

Fig. 12. Temporal evolutions of the kinetic energy for Case A (solid line), Case C (dot-
ted line) and Case D (dashed line) where the amplitude is normalized by the

maximum value of all.

Fig. 13. Temporal evolution of the current density at the geometrical axis for the same

cases as Fig. 12.

Fig. 14. Temporal evolution of the force-free parameter A s for Case C where three pazels
show the perspective views of A in the upper half (2> 0 ) of the poloidal
cross-section at ¢ = 80ty (top), ¢t = 120t (middle), and t = 150¢,4 (bottom),

respectively.
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