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Abstract

Ton temperature dynamics related with the density profile are studied in
Heliotron-E plasma. The density profiles can be peaked by the H,/D, peilet
injection or flattened by second harmonic electron cyclotron heating (2nd-
ECH). Higher ion temperature and better ion transport are observed associated
with the density peaking, and a large density gradient results in the radial
clectric field shear. The improvement of ion transport is more related to the
radial electric field shear, rather than to the bulk velocity shear.

i. INTRODUCTION

Ton temperature dynamics are studied for neutral beam heated plasmas
with H2/D2 pellet injection and/or second harmonic electron cyclotron heating
(2nd-ECH) in Heliotron E. Heliotron-E is an axially asymmetric
heliotron/torsatron with 1=2 , m=19, major radius R=2.2m, minor radius a =
0.2m, magnetic field B=1.9T, NBI power < 3MW [1]. The time evolution of
ion temperature profiles are measured with multi-chord charge exchange
spectroscopy (TVCXS) with 40 spatial channels and with a 16.7ms time
resolution using a charge exchange recombination line of fully stripped carbon
[2]. Fast changes in the central ion temperature are measured with a center
chord neutral particle analyzer (NPA) with the time resolution of 2 ms. The
density peakedness is estimated with 7-chord FIR interferometer [3L

2. PELLET INJECTION

As shown in Fig.1(a), the central ion temperature keeps increasing after
recovering from the H2/D?2 pellet injection and the central ion temperature
doubles well after the pellet injection { > 50 ms). The electron density profile
becomes hollow with pellet injection (t=332ms), because the pellet penetrates
only to half of the plasma minor radius. The density profile is peaked in a few
tens of ms after the pellet injection and becomes even more peaked afterwards
(t=408ms). Figure 1(b) shows the peaking factor of ion temperature profiles as
a function of the peaking factor of electron density profiles plotted every
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FIG.1 (a}Time evolution of the ion temperature atr =0.02, 0.16, 0.35, 0.50, 0.64 and 0.79
measured with TVCXS and (b) peaking factor of ion temperature profiles as function of
peaking factor of electron density profiles for the L-mode discharges and discharges with pellet

injection in the Heliotron-E.

16.7ms for the pellet injection discharges and also, for reference, the L-mode
discharges with similar central electron density. It clearly shows the strong
coupling of ion temperature peaking and electron density peaking. The strong
coupling of ion temperature peaking and electron density peaking (T;(0)/<T,> =
3.1 and n(0)/<n> = 2.6, where <> stands for volume average) and
improvement of ion transport due to density gradient are also observed in high
T; mode discharges [4], where the spontaneous density and temperature
peaking occurs after the NBI with no gas puff and with low wall recycling due
to boron coating. '

One of the effects of density peaking is to enhance the radial electric field,
if the bulk rotation is kept constant. To check that, the radial electric field
profiles are derived from the impurity poloidal rotation profiles with a radial
force balance equation of impurities. From the radial force balance, the force
due to the radial electric field, E, should be balanced by the forces due to the
pressure gradient-and the Lorentz force due to plasma rotation as E_=
(1/eZ;n,)op,/or + ( Bevq) - B¢ve), where p is pressure, By and B¢ are the
poloidal and toroidal magnetic field, and v and Vg are the poloidal and toroidal
rotation velocity. The suffix i stands for species and 1=H for bulk hydrogen and
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FIG.2. Radial profiles of (a) ion temperature, (b) ion thermal diffusivity, (c) radial electric
field, and (d) bulk poloidal rotation velocity for the L-mode discharges and the discharges with
pellet injection (n(0) =7.3 x 101°/m’) in the Heliotron-E.

i=C for carbon impurity. Z; is atomic charge of bulk ( Z;; =1) or carbon
impurities (Z- =6). In the heliotron/torsatron devices, toroidal rotation is
damped by parallel viscosity, Vo~ 0, then E_~ (1/eZ;n,)dp;/cr - B¢Vei. Poloidal
rotation profiles of impurity fons, vg~(R), are measured and the radial electric
field, E, is calculated with E. = (1/eZn)dpc/or - B¢Vec. The bulk poloidal
rotation velocity is estimated from the radial electric field and bulk pressure
gradient measured as vgy; = (1/eB o Zyng)Opy/or - E/B b Here it should be
noted that the diamagnetic drift velocity of the bulk ions (1/eB¢ ZynypOpy/Or is

— 3 —
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comparable to the E /B o drift velocity. On the other hand, the diamagnetic drift
velocity of the carbon impurity ( 1/eB¢ Z-n¢)0p/or is much smaller than the
E/B 4 drift velocity.

As shown in Figs. 2, a more negative radial electric field and greater E,
shear are observed in the pellet injection mode than in the L-mode discharges,
although the bulk poloidal rotation velocity profile in the pellet injection mode is
similar to that in the L-mode discharge. The peaked ion temperature profiles
with the pellet injection is due to the improved ion transport (as seen in the ion
thermal diffusivity profiles) The improvement of ion transport can be explained
by the radial electric field shear due to the large density gradient (density
peaking) triggered by pellet injection. The largest improvement of ion transport
is observed near the plasma center, not outside the half plasma minor radius,
where the radial electric field has its maximum magnitude. Therefore these
results suggest that E_shear is more important than the bulk plasma velocity
shear in reducing the turbulence and improving ion transport.

3.  SECOND HARMONIC ECH

Second harmonic ECH has particle "pump-out” in the core region and
makes the density profiles flat [5]. When the 2nd-ECH is applied to the plasma
with peaked density profile, both the density peakedness and central ion
temperature decrease, although the total heating power by NBI plus ECH is
increased [6]. To study a causal link between the radial electric field shear due
to density gradient and improvement of ion transport, time evolution of the
density peakedness and the central ion temperature are measured at the onset of
the 2nd-ECH pulse for the high T; mode discharges, where both the electron
density and ion temperature are peaked. As seen in Fig. 3(a), the central ion
temperature starts to decrease afier the 2nd-ECH pulse is turned on and
recovers after the ECH pulse is turned off. These changes in the central ion
temperature are associated with the flattening of the density profile.

Figure 3(b) shows the central ion temperature as a function of the density
peaking factor. If the density flattening (decrease of radial electric field shear)
and drop of central ion temperature take place simultaneously, this is the case
that 2nd harmonic ECH directly deteriorate both particle and heat transport, the
time trace should be on one line. When there is causality between these two



F1-CN-64/CP-5

Wr——— 71 71 17 ] 80—
800 | E‘_"'.- 1 750:

; 700F
700} [

T (0

= i
=650

600 [y

600 F

- no ECH

S e 550
—a L _ECH ] ‘ 1
400 Rl I R j—EQH—J . 500 PRI BRI RPN S
320 340 360 380 400 420 440 0.5 1.0 1.5 2.0 2.5
time (ms} ne{Q)/<ne>

FIG.3. (a)Time evolution of the ion temperature measured with neutral particle analyzer
(NPA) for the high T mode discharge (no ECH pulse) and the discharges with 2nd harmonic
ECH pulse for t =340-360ms, 360-400ms, and 380-420ms and (b) central ion temperature
profiles as a function of peaking factor of electron density profiles for the discharge with 2nd
harmonic ECH pulse for t = 360-400ms in the Heliotron-E.

parameters, the time trace deforms to be elongated circularly and the direction of
rotation (clockwise or counter clockwise) shows which is first. The measured
data clearly shows that the change of density peaking factor is first. These
observations support the hypothesis that the density gradient and radial electric
field shear contribute to the improvement of ion transport. The flattening of
density profiles causes the drop in ion temperature and the enhancement of the
ion thermal diffusivity. The large ion thermal diffusivity for the discharges with
a 2nd ECH pulse [see Fig.2(b}] is also explained by this mechanism.

4.  CONCLUSION

Dynamics of ion temperaure for the density peaking phase shows that the
increase in density gradient, which produces larger radial electric field shear,
causes the increase of ion temperature due to the reduction of ion thermal
diffusivity. Most I.-mode discharges in Heliotron-E have flat electron density
and small E_shear and that result in a flat ion temperature profile ( typically less
peaked than that in tokamak). However, by controlling E_shear (not bulk
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poloidal rotation shear) with pellet injection through density peaking, the ion
thermal diffusivity, y;, can be reduced to 0.7 m?/s at p =10.1, which value is in
between the %; values for L-mode and those for the improved modes (y;(0.1) =
0.5m?/s in supershot , Xe(0-2) = 0.6m?/s in PEP-mode, Xesl0.2) = 0.4m?%/s
in VH-mode, ;(0.1) = 0.1m?%/s in high-B,, mode) in tokamaks [7-10]. On the
other hand, the 2nd harmonic ECH deteriorates the density peaking and
enbances the ion thermal diffusivity ( 3 m%/s) as high as or even higher than
that in L.- mode discharges.
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