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Abstract

A new charge exchange spectroscopic technique using a Fabry-Perot spectrometer has been
developed to increase the photon flux at the detector and improve the time resolution of ion
temperature and plasma rotation velocity measurements. The spectral resolution is obtained by
arranging two dimensional fiber optics and a two dimensional detector at the focal plane of a coupled
lens located on both sides of a Fabry-Perot spectrometer. The effective finesse of the Fabry-Perot

interferometer in this system is 14. The time evolution of the 1on temperature is obtained with a time

resolution of 125 us and with the spatial resolution of 3 cm (8 channels).

Keywords : Charge-exchange spectroscopy, ion temperature, pellet injection



Charge exchange spectroscopy has been routinely used to measure ion temperature, toroidal
and poloidal rotation velocity, and radial electric field profiles in tokamaks and stellarators including
heliotrons (R.J.Fonck et al., [1], K.Idaetal., [2]). Recently, fast changes of the poloidal rotation,
which indicates a fast change of the radial electric field, are observed, and the improvement of the
time resolution of the charge exchange spectroscopy has becarme a more important issue
(R.J.Groebner et al., [3]). However, charge exchange spectroscopy using a monochromator and a
CCD detector has relatively poor time resolution, although it has excellent spatial resolution {K.Ida
and S.Hidekuma [4]). A new charge exchange spectroscopy using a Fabry-Perot spectrometer
{(J.G.Hirschberg and P.Platz, [5]) has been developed and installed in the JIPP TI-U tokamak
(where the major radius R is 0.93 m and minor radius @ is 0.23 m) to increase the photon flux at the
detector and improve the time resolution of the ion temperature and the plasma rotation velocity
measurements up to 8kHz. The spectral resolution is obtained by arranging two dimensional fiber
optics and a two dimensional detector at the focal plane of a coupled lens located on the both side of
the Fabry-Perot. Figure 1 shows the schematic diagram of the spectrometer system including an
interference filter to limit the spectral bandwidth illuminating Fabry-Perot. The spacing of the Fabry-
Perot is 100pm. The two dimensional fiber bundie ( 20 x 20 mm) consists of four hundred lmm
optical fibers and is divided into 8 sections to obtain the spatial resolution. The image of this fiber
bundle is focused on to the photo-cathode of an image intensifier with a tandem micro channel plate
(MCP) coupled to a 16 x16 channel two dimensional photo diode array (PDA). The PDA (17.6 x
17.6 mm) consists of 256 photo dicdes (Each photo diode is 0.95 x 0.95 mm and with a center to
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center separation of 1.1 mm. The wavelength, A, of the light transmitting through the Fabry-Perot is



given by
A= g 1-8%12),

where ?LO is the wavelength transmitted for the normal incident light, and 6 is the angle
between the line of sight of each photo diode and the optical axis of the Fabry-Perot, and is
determined from the distance of each photo diode from the optical axis.d, and the focal length of
coupled lens, f, as 6 = d/f. There are eight photo diodes from the center to the edge of the PDA
detector and so effectively eight spectral channels. The spectral resolution and spectral range
simultaneously measured with the PDA can be adjusted by changing the focal length of the coupled
lens, f. Figure 2 shows spectral resolution {full width of half maximum : FWHM) of fast charge-
exchange system for the pixels located at d= 7 mm (8 =0.04 when f = 180 mm) and for the nciedent
light with the wavelength of A = 6328 A OLO =6333A) for various focal length of coupled lens. We
note here that the FWHM differs for different pixels and it increases as the tilted angle © is increased,
because the wavelength dispersion increases linearly as [dA/d8| = 7“09 . As the focal length of the
coupled lens is increased the spectral resolution is improved up to 1.4 A, which is determuined by the
spectral resolution of the Fabry-Pero, but the spectral range also decreases. On the other hand. when
the focal length of the coupled lens is short enough ( f < 180 mm) the spectral range becomes larger
and close to the free spectral range (FSR) of the Fabry-Perot and the spectral resolution is determined
by the channel resolution of PDA as shown in Fig.2. The FSR of Fabry-Perot interferometer is 20 A
at 6328 A | the effective finesse of the Fabry-Perot interferometer in this system is 14. This value is
much lower than the original finesse of the Fabry-Perot interferometer of 40 which 1s obtained when

the incident light is parallel to optical axis (8 =0.0). This is because of the finite pixel size, especially



the outermost channels where the incident light is angled to the optical axis of the Fabry-Perot.
Figure 3 shows the intensity distribution of the charge-exchange line of the carbon impurity
CVI (n=8 —>7 transition, 5290.5A) at the PDA, for the NBI heated discharge with peilet injection in
the JIPP TH-U tokamak. The CVI background emission, measured just before the NBI is injected, is
subtracted from the CVI charge-exchange emission. The intensity distribution at the left top section
corresponds to the CVIemission from the plasma edge and that at the Jeft bottom section corresponds
to the emission from the plasma center. As shown in Fig.3 (b), the two dimensional image of the CVI
emission is divided into eight sections every 45 degrees. These eight channels correspond to the
viewing chords in the plasma, from the plasma center to the plasma edge. Unfortunately. the edge
two chords (chl and ch8) have reflection problems at the viewing port and they are not used for the
analysis. Therefore the outermost chord viewing near the plasma edge is ch 2 and the innermost
chord viewing near the plasma center is ch 7. The photo diodes at and near the boundary between
chords are masked (not used) to avoid overlap and crosstalk, and these pixels are illustrated with
shaded area in Fig 3 (b). Then each chord contains 21 spectral pixels {photo diode) used in the
analysis. However, more than one photo diode corresponds to one wavelength, and the effective
wavelength resolution is only eight. Figure 4 shows the measured spectra of a single chord at two
time slices at R =1.06m (p = 0.55), 0.05ms before (t = 208 ms) and 0.45ms after (t=208.5 ms) the
ice pellet injection. The deviation of data from the Gaussian fitted curve (for instance the data at A =
5291.2A ) is considered to be due to the variation of fiber transmission, the convolving effects of the
spectral instrument functions and the individual sensitivities of the photo diodes and not due to the

photon statistics. However, these variation will be corrected by calibration in future. The spectra are
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fitted with Gaussian profiles plus a lineur background and including the convolution of the instrument
functions. The ion temperature is derived from the Doppler width of the CVIintensity. Figure 5
shows the time evolution of ion temperatire measured at various position from p =0.13 10 0.82 with
a time resolution of 125 us, which is determined by the sampling speed of data acquisition. for the
discharge with NBI and ice pellet injection as an example. The ion temperature at a normahized minor
radius, p =0.13, drops from 0.36 to 0.23 keV while the edge ion temperature at p =0.82 drops from
0.1 10 0.03 keV after the pellet injection and recovers within 5 - 20 ms. The fast drop of the ien
terperature observed indicates a direct cooling of the ion by pellet injection.

A new charge exchange spectroscopic technique using a Fabry-Perot has been developed in
JIPP T-ITU tokamak. The time resolution of the ion temperature measurement is 125 s with a spatial
resolution of 8 channel. The spectral resolution is now limited by the 8 channel of PDA in the spectral
direction. The spectral resolution will be improved up to the effective finesse of 14 of the Fabry-
Perot, by increasing the number of photo diodes of the detector from 16 x 16 to 32 x 32.

The authors acknowledge Dr.B.J Peterson for cormrecting the manuscript.



References

[11 R.J.Fonck, D.S.Darrow, and K.P.Jachnig, "Determination of plasma ion velocity distribution via
charge-exchange recombination spectroscopy”,Phys. Rev. A 29, 3288 (1984).

[2] K.Ida, H.Yamada, H.Iguchi, S.Hidekuma, et al., "Electric field profile of CHS
Heliotron/Torsatron plasma with tangential neutral beamn mjection”, Phys. Fluids B 3 (1991) 515.

[31 R.J.Groebner, K.H.Burrell, and R.P.Seraydarian, "Role of Edge Electric Field and Poloidal
Rotation in the L-H Transition", Phys. Rev. Lett. 64, 3015 (1990).

[4] K.Ida,S.Hidekuma, "Space- and time- resolved measurements of ion temperature with the CVI

5292 A charge-exchange recombination line after subtracting background radiation”, Rev. Sci.

Instrum. 60, (1989) 867.

{51 J.G.Hirschberg and P.Platz " A Multichannel Fabry-Perot Interferometer”, Appl. Optics 4 (1965)

1375.



Figure captions
Fig.1.Schematic diagram of fast change exchange spectroscopy system using Fabry-Perot
interferometer.

Fig. 2. Spectral pefomance (full width of half maximum) of Faby-Perot system for the pxels located

uq

at® =0.04 and A = 6328 A (?LO =6333A) for various focal lengths of coupled lenses.

Fig.3. (a) 3D-plot and (b} contour plot of intensity distribution of charge-exchange line CV1I (5290.5
A detected with 16 x 16 PDA at t = 208.5 ms (0.45ms after the ice pellet injection).
Fig.4. Spectra of charge-exchange line CVI (5290.5 ﬁ\_) atR = 1.06 m (p = 0.55), 0.05ms before (t

= 208 ms) and 0.45ms after (t = 208.5 ms) the ice pellet injection.

Fig.5. Time evolution of ion temperatures measured by the Fabry-Perot spectrometer at various

positions from p = 0.13 to 0.82. for the discharge with ice pellet injection at t=208.05ms.
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