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Abstract

A survey is made on the problems of the edge plasmas, to
which the analyses based on the MHD theory have been successfully
applied. Also discussed are the efforts to extend the model
equation to more gemeral (and important as well) problems such as
H-mode physics.

An overview is first made on the advantages of the MHD
picture, and the necessary supplementary physics are examined.

Next, one- and two-dimensional models of the spatial struc-
ture of the edge plasma is discussed. The results on the
stationary structure, both analytical and numerical, are
reviewed: Typical example as well as the scaling law are shown.

The instabilities associated with edge plasma is next
reviewed, The surface kink mode, ballooning mode, interchange
node, resistive interchange mode and thermal instability are
discussed. Role of the geometry such as the location of the Y-
point is studied. Influences of the atomic processes, and those
of the radial electric field are also discussed.

The analysis of the H-mode transition physics is finally
discussed. The boundary plasma is a nonlinear media which
possesses the possibility for bifurcation in which the radiatl
electric field plays a key role. The model of the ion viscosity
is also studied. Transition physics is developed. Analysis on
the self-generating oscillation is shown and the relation with
ELMs is discussed

After reviewing these problems, several comments are made to

what directions the study can be deepened,
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A REVIE¥ ON APPLICATION OF WID THEORY
TO PLASMA BOUNDARY PROBLEMS IN TOEANAZLS

Part A

Fimitaka Itoh
National Institute for Fusiom Sciemce, Nagoya 464-01, Japan

[I1 Introduction

The important roles of the edgze plasma have been widely recognized
both on the plasma confinement research and the design study of fusion
reactors, The basic physics approach was coppiled in Ref.[1]. ZRecent
experimental fiadings, such as the H—modez), had a large impact in the
progress in this field, as is reviewed in [3]. One of the keys is the
sensitivity of the plasma response to the change of the plasma position,
suck as the plasma-wall distance or the directions of the ion VB drift and
I-point Iocationz'S). It is necessary to find out the key parameter which
characterizes the spatial structure in modelling ihe edge plasra phencma-
na., The impact of the plasma properties on the design of future iarge
devices is alsc well known. For instance, the estimation of the heat
localization width and its dynamic change (such as in the large ELMs (edge
localized modes)) are critical issues.

In the study of these problems, the analysis based om the magneto-
hydrodynamic (MHD) equation has been performed. This equation has the
advantage that phenomena of various time scales, from the Alfven tranmsit
time to transport time, can be treated and that the plasma configuration
is easily taken into account. In this article, we present a brief survey
on the probleas in edge plasmas, for which the analysis based on the fluid
equations are successfully applied, ¥e also discuss the efforts %o extend
the model equation to investigate more general and important problems such
as H-mode physics, ¥e fimally discuss the future possible investigations.

[II] Structure of Edge Plasmas

The plasma and geonetry of our analysis
are shown in Fig.l. The thick dotted line
indicates the separatrix. The definition of
the "edge plasza’ has not been made uniquely,
Fe here consider that the edge plasmas are
consist of the plasma (1) outside of the
outermost magnetic surface (i.e., scrape-off
layer) and some inside of the separatrix,
i.e., in the region (2) where the inhomage-
neity along the field line is appreciable or

(3) in which the radial gradient length
depends weakly on the minor radius.

{(Poleoidal mesh is for 2-D calculation.)



The basic eguations, i.e., the continuity equatioms of the
density, the momentum and the energy, are given in literatures 285)

ap/at + V- (pV) = § (1-1)
pdV/dt = - V- + R+ F + § (1-2)
a(pEg)/at + V-(EgT) = -I:VY + (R+F)+V - Veg + S (1-3)

p is the mass demsity, Eg is the internal energy per unit mass, F is the
external force, and other notations are standard. The MHD equaticns are
not closed by themselves, and we need to specify the clesure such as the
equation of state, the stress teasor I, and the transport coefficient, and
the model of the sources (Sp. S,. Sg).

The comnon choice of the closure is that the parallel tramsport is
classical, and only the diagonal part of the stress temsor, element of
which is p=nT, is kept. The frictional force R is calculated by Spitzer
collision frequency. The classical values are used for the plasma resis-
tivity 7 and paralle! thermal conductivity. The electron energy flux g, is

given by que + g% and that for ionm is given by ap', where

aq, = -0.71T d/e + (3T u,/2eR,)bxi,

ap = -k, VT - &, Vi T +(5aT/2eB)bxVT.

Vg is the electron collision fregquency, €1, is the electroxn cyclotron
frequency, b=B/B and k=n%. The perpendicular traasport coefficients are
considered to be anomalous, and the prescribed form is employed.

The particle source can be calculated once the neutral deasity is
given. This term depends om the geometry strongly. The connection with
the compuiation on neutral dynamics is discussed in [6].

The boundary conditions at the plasma-material interface are
given7) in the form of the Bohm sheath criterion and enmergy transmission
coefficient To i The current across the plasma-wall interface is often
assumed to be zero. The extensionm to the case where the current flows
across the wall (e.g., the divertor biasing) is also possibile.

The plasma distribution along the field line in the scrape-
of f layer is first studied, When the plasma thickness is parameterized by

A, the parallel energy conduction equation along the field lime givesg)

1% ? -1y B0 4 o uekg oy ByPoy /B2, (2)

where & is the distance along the field line from the divertor plate, k=

:OTZ'E, Pout 18 the total energy outflux to Sol, a and R are the mimer and
najor radius, and the energy deposition im the SclL plasma is neglected for
the simplicity. Though very simplified, this equation reveals essential



characters of the SolL plasma
The Bohn sheath criterion gives the plasma parameter in froat of the
divertor as

Tq = Pout/07iToyy and my = /A7y (B /B,2raR) (6T, )8/ 2/ /P 1,

where Ty=Tg+7;, G is the enhancement factor of the particle flux in Sol
plasma and T, is the particle flux out of the main plasma. T4 and n4
are essential in evaluating the performance of the divertor.

The parameter A is determined by the cross field emergy transport,
Solving the equation kW - ~ql(mP0ut/4n2aR). the estimation of
4 is obtained in [9]. If the cross field tramsport is given by the Bokgp-
like diffusion, z « T/eB, we havel0)

8/a = 5, (LB /egab )4 Wcrsp  )8/11 (2

where L is the distance between midplane and diverior along the field
line and ¥ =%, T. The heat flux channel becomes narrower as the power
increases. It is 2lso shown that A does not scale to al. (For instance,
if Py v 23, then A ~ aE/II.)

The drift heat flux {VTxb term in qp) can also affect the heat chan-
nelll) This tern depends or the direction of B, and can be taken inmto
account in Eq.(3) by modifying [

The numerical analysis has been performed in order to obtain the two
dinensional structure of the Sol plasmaﬁ’lz'lﬁ). These calculations can
also determine the neutral particle profile, and hence the parameter G,
Exeeple is shown in Fig, 2, 7Tt is shown that the dense and cold divertor
plasma is established, and the meutral particles are localized nearby,

MAX:7.0E0Q1

INT:5eV

Fig.2 Exzmples of the 2-D simulation in the Sol regicn, Profiles of
Te' Ny, ng are given. (Modei of JFT-2M plasma. the ionm VB drift is
in the direction of t%? i-point, the total fluxes from core are P

=0.5U¥ and T =5x10°" /sec, respectively.) out

out



Though the 2-D computations can mow be fluently done, scaling study
is desirable to have a fast grasp of the phenomena. The scaling study has
been perforamed by usizmg the 2-dimensional numerical code (assuming the
Boha diffusion coefficient) to give15)

1.1 0.35 -1 -

13 v Tout " Pout v Te d v PoutTout (4-1)
-0.3 0.5 -0. 25 ‘

oy v ToutPout ] Te.b ™~ Pout  Tout . (4-2)
0.4 -0.23 -0. 24 0.15 _

Lp v Tout * Pout vy v Toyt Pout (4-3)

where e and &, are the scale lengths of the radial gradients, T/T' and
n/n’ (' =d/dr), at the midplane, respectively. This result confirms that
the analytic result is a good estimate. If we eliminate I'j 4 from Bq. (4-
0'4nb"25. Equations (2) and (3) give Ty ~ Tb4/11nb'
Fe see that the plasma structure is well understood, and what is

2), we have Te.b”Pout
2/11_
really necessary is the understanding of the cross field transport.

Extension to the impure plasmas has also been performed14'15),

{I1I] Stability of Edge Plasmas

MED equation is most successfully applied to the study on
the plasma stability. The strong shear associated with the separatrix and
the poloidal location of the ¥-point are critical for the study on the
stability beta limit.

The average magnetic curvature at edge of the tokamak plasma is
favourable (except the case where the X-point is outside of the torus).
The unstable mode may be localized in the outside of the torus (where the
local bad curvature exists). The wave length along the filed line is
long, i.e.., ky= bV = 1/a but the one across the filed line is shorti,
a/ae>>1/a. For the perturbation &(r, 8,2), the ballooning transformation
vas introduced as 17 ¢(r,B.t)=Eexp(-ime+nt)Jj:dx¢(1)exp{i(m-nq(r))x},
where q(r) is the safety factor and » and a are the poloidal and toroidal
node nuzbers, respectively. (MNote 2 is the coordinate, not thermal con-
ductivity. ¥e here follow the notation of Ref.[181.) The Euler equation
for high-n mode is given in a form of the ordinary differential equation.

Analyiic formula for ideal HHD mode was obtained in the high aspect
ratio limit of the circular plasma. The Euler equation is characterized
by the three parameters, i.e., s=rq’/q (local shear), o= -ZquBﬂzp' {local
pressure gradient) aad 6=(1-q'2)r/R (average well). The Euler equation is
sinplified as (a/a1)[1+1%108/ axt (aCcosx-Isink)-8-12(1+1%))® = 0, I= st-
osini, and T is the growih rate. The instability condition for low s case
is given as 3/4Ta’-/at/2-32a8/91 ¢ s < 3/40o2+/et/2-3205/9]), showing that
the ballooning mode is stable for a<0.8/S and o>2.2/5 (the second stabili-
ty). TFigure 3 illustrates the stability limit for the pressure gradient
(&) as a function of the shear.



a8~
Fig. 3 Unstable region for high-
n ballooning mode on the s-a
plane (hatched region)
Dashed line indicates the
ideal stability limit.
Shafranov shift is taken into
account, BP=B 0/(1-AcosBL
and A=0.1}. Tﬁe finite resis-
tivity widens the unstable
region to low beta regioT
Quoted from Sykes et al. )

In the edge piasmas, the plasma resistivity % is small but finite,
The dissipation process can destabilize the mode for the regime where
ideal UHD mode is predicted to be stable. The effect of the resistivity
has been studied in detaills'lg). For the finite-resistivity plasua,
Buler equatior is reformed, and is characterized by the four parameters,
s, & & and 8, where S is the magnetic Rayrolds number, S=vﬂp0a2/UR_ For
the case of the streong ballooning limit (}sx|<<1), the growth rate 7 is
determined by (growth rate T is normalized te vy /R

% 1 (kg2/28)07% - e - (1,2/28)(a-) - 0. (5)

where TI is the growth rate in the ideal MHD limit, Tf = «-/af2-6. It is
shown that. in the absence of well (640), the mode is unstable for all
value of & i.e., the stability beta limit is zero (see Fig.3). The mode

growth rate is given as
T ~ (uk82/23)1/3 for 110,

In the presence of the magnetic well, the critical beta for stability
appear below the ideal MHD stability limit. An estimate for stability
from Eq. (5) is given by o<s.

The comparison study of the occurrence of the 'Type-I' ELWs?0) cor-
responds to the stability boundary for the ideal ¥HD instability, suggest-
ing the importance of this kind of instability, However, the catastrophic
nature, such that tke sudden growth of the mode with m~l0 acts as ihe
precursor of Giantg ELHSZI), is not understoed,

Atomic process is also the characteristic to the edge plasma, and
affect the edge stability tremendously.

Global instabilities are known such as MARFEzE) znd detachment., The
radiation loss is modelled as Sg = ~nnyL(T,), where a7 is the
impurity density, JYodels on L(Te) and the dynamic response of ny with



respect to the perturbation are necessary to quantify the growth rate,
The latter is usually denoted by the parameter E=-(Ee/ne+ﬁ1/n1)(T/f).
Asymmetric thermal imstability (m=1/nr=0, i.e.. MARFE) can grow if22)

nplal/aT+EL/T] > (x)/Ca-rydP+2,/aR%}, and &ngl/T > x,/a%R%,  (6)

where [rb,a] is the region of the analysis, where 3L/aT is negative and
large. If the latter condition of (6) does not hold, the poloidally sya-
metric mode (i,e., detachment) starts to grow. This picture is often
referred to as an origin of the density limit. The lighter impurities
(for which aL/aT<0 for the lower plasma temperature) leads to the HARFE
while the heavier one to the detachment (and then disruptionm): These
predictions are consistent with experiments.

The microscopic mode is also affected by atomic process, For ins-
tance, if the neutral demsity ng is constant, then the demsity fluctuation
 gives the source of fluctuation Sn=rnﬂznoﬁ<dv>. This positive feed back
enhances the growth rate of drift-like waves by the amount of Tnzs). The
peutral density itself contains the fluctuating component, and a relation
§, = 7T is not always valid. Further analysis is required.

The sharp gradient of the radial electric field (flow velocity shear)
can alsc affect the stability of the edge plasma. The electric field
gradient influences the stability through modifying the ion orbit24).

The effect was studied by MHD equationSZS)‘ Stabilization is expected if

|B, kg/Bk, | ~ 7y (N

where 7 is the linear growth rate in the absence of E.'. Recent progress
has shown that the mode amplitude is not necessarily reduced by the velo-
city shear, and the intensive study is under wayza)_ The study in this
direction was motivated by the prediction of the radial electric field at
the L- and H-mode transition®’? and its confirzation by experimentszs’zgx

[IV] Bifurcation Phenomena

One of the most dramatic fisding in recent plasma confinement experi-
nents was the H-modeZ). It has shown the generic nature of the edge
plaspa that the multiple states are allowed for given extermal conditions,
that the typical gradient lergth can be free from the minor radius, amnd
that it has a2 rapid time scale for the transition, Efforts have also been
pade to model these phenorpena in the framework ¢f the fluid picture of the
plasma, and are illustrated in the following.

A possible mechanism of the bifurcatioz was proposed by taking into
account the effect of the loss coneZ7). The basic physics picture was
that the gradient-flux relation should have the form, which is



schematically drawn in Fig.4, to ex- )
plain the sequence of the {ransition and q,l fie. 4
that this is possible at edge (not

characterized by the separatrix).

To quantify the model, it is neces-

.

sary to study the nature of the visco-
sity tere in the basic equation. FWe

write the Poisson equation combining on.vT
with the equation of motiom as ’

ege 8B /8t = (T, - T - Ty ) (8)

where & 1is the perpendicular dielectric constant, .. i1s the bipolar

component of electron flux, T is that of ion flux, and Tie is the loss-

ri
cone current of ions. (These terams are neglected in assuming O/p by the

relritlyec:

The tern Flc las the dependence on Er as Ty~ ppniuie'o'Sexp{-:le where

unit tenmsor,) The stationary solution is obtained by solviag T

vy is the ion collision frequency, e-a/R, E indicates the effect of orhit
squeezing due to the inhomogeneity of EFSO), and X=eErpp/T. (X is equal to
the poloidal Mach number va/VTin if Vp=Er/Bt.) This shows that the loss
flux can reduce if E. is large enough. Figure 5(a) illustrates the case

study that Tra is preportional to (-n’/n+eEr/Te), and rri is neglected,

]

Fig.5 Balance of loss cone loss T
and electron loss Fr determines
the radial electric ?ield I=
eppE /Ti (a). For ths case of A
(smail A=p_n'/n), one large-flux
solution ig allowed. Multiple
solutions are possible for the
medium 2 case (B and C), and the
one small-flux solution is allowed
for large value of A (D). The
resultant flux as a function of a
is shown in (b). The characieristic
response im Fig.4 is recovered.
When the electron loss term T is
negligible, the ion viscosity-
driven flux T,y and I'e {solid and

-2 -1

- X o dashed lines, réspectivély) determine
40 N WS TN S SN SO the radial electric field {(c). The
4 3 2 1 6 1 2 3 4 function T'(X) shows the similar

response as in (b).



The jump of T is predicted at the critical gradient

A= p.n'/n = A

o and A, ~ 0(1) (9)

c’
as is shown in Fig.5{(b). This example shows that the singularity of the
transport property T[Vn] can be explained by using a continuous function
of T[E,1.

The extension of the model is possible by comsidering Frlsl) The
bulk v180051ty generates the force on ions in the poloidal directiom as
Fo ~ -myD;049 V £f(1). The function £(¥) is unity for |%|<<1 and behaves
11ke exp( 1) (plateau regine) or I "2 (pfirsch-Schluter reglne)sl‘sz).

Figure 5(¢) illustrates the balance of Ty = -T confirming that the

ri’

bifurcation can occur at the pariicular value of the edge gradient, Ay

0(1). Variety of the bifurcation is predicted. When the electron tera
Tre
to the more positive E takes place if P is important. Other candidates
such as the V¥V term or the turbulence drlven flux are also studledas)

The proposal of the electric bifurcation?’) was tested by experi-
pents. D-III DZS) and JFT-ZHZQ) confirmed the radial electric field. The
transition can be excited by the radial current driven by the probe and
external circuit34). The layer width is of the order of ®p 292 The

is negligible, the tramsitionm occurs to the more negative E, and that

nonlinear response of F to ¥ is confirmed by the biasing exper1ment35)
Various types of ELHs are known in exper1ment322). Some is corre-

lated with the critical gradient of edge pressure against the ballooning

node, and some is not. The bifurcation theory predicts a model of spall

and continuous ELEsgsx

The hysteresis between Vo and T can generates the
oscillation (" limit cycle solution’). The dynamical equation (8) is
solved with continuity equation and the model equation T[X,p]l. Model

equation can be formulated in the form of the Gintzburg-landau equation as
an/at = (38/ax)b()an/ax, (10-1)
wal/at = -NCI, A 0) + pa’l/ax’ (10-2)

where D is the effective diffusivity, x=a-r., v is the smallness parameter
of the order of (pi/pp)z, s is the shear viscosity, and N represents the
current e[l 4T ;-F ] which has the nonlinearity and depends on both B
and Vo, Introduction of the shear viscosity allows us to study the radial
structure of the barrier. (Note that normalization is used as x/ppax.
D/DyD. w/Dgen, t/(p,2/Dydwt. and Dy being the diffusivity in L-phase.)

4 siwplified model was studied where N(X,a,n) is given N(I,g) (g=
A/v;) and N(X,g) is modelled by the cubic equation as in Fig.6(a). It is
shown that the set eguation (10} predicts the self-sustaining oscillation
for a fixed value of the flux from core. This oscillation is possible in
a limited area in the parameter space. Otherwise, either the high-cen-



finement state (H) or low confinement state (L) is allowed. Figure §(b)

and {c) illustrate the oscillatory solution of the out flux, and the

radial profile of the effective diffusivity iz H and L phases. In the time-
phase of good confinement, the reduction of D extends from the surface to
the layer, the characteristic width of which is given /ETﬁpp.

/-out |
A4
3
2
1
O 1 1l! 1 | O ! X
0 tot2 -2 -1 0
Fig. 6 Model of the effective diffusivity D (D=-T/¥n) as a functiop of
Transition cccurs at points A4 and B’ .

the gradient parameter A/u; (a). _ :
Two branches 0 znd L are sEown. The predicted oscillation, for given

constant flux from core, is shown in (b), The profile of D at the two
time slices (arrows in (b)) are shown (c). x=0 corresponds to the surface,

and x<-2 to the core plasma.

These results also illustrates the importance of the viscosity in the
dynamics anmd structure of the edge plasmas

(V] Susmary and Future Probless

In this article, we briefly surveyed the applications of the MHD
theory for the understanding of the edge plasma physics. The edge
phenomena is geometry-dependent, and contains various time scales. The
UHD equation is a suitable tool for modelling the phemorena in the edge
plasmas. It was successfully applied to study the two-dimensional profile
of the plasma, the behaviour of impurities, and the stability analysis.
Recent efforts has been to extend the applicable zrea by investigating the
role of the radial electric field and the viscosity,

We here stressed that the WHD equations are not closed by themselves,
and need some closure model. The study on the stress tensor H can
largely extend the area of the application. Many results are dependezt on
the choice of the anomalous iransport coefficient.

Conbining the theory that the radial inhomogemeity of E. Cor VP) can
stabilize the microscopic instabilities, the structure of the established
electric field (flow velocity) are considered to suppress the microinsta-
bilities and associated anomalous transport. The reduction of the znoma-
lous transport further improves the confinement iaside of the tramsport
barrier, Figure 7 illustrates the present "standard model’ for the traz-



sition phenomena at edge,
though many part of the

elements are still

stabilization/
* destabilization
Microscopic
instability

qualitative yet.
There are couple of

Lasses by
Laoss cone, Ripple,
Magnetic Braiding

problesms which reguire

future studies. The

charge neutrality

influence of the atomic

processes has been examined
in the MHD a2nalysis.

Further analysis to refine Anomaious

podels for the impurity Transport
response is regquired. The
determination of the
stability liait 1s now a Fig. 7 Schematic diagram betfween the
well-defined problen for radial electric field/ rotation
the radial current, anomalous

the realistic geometry and transport, and plasma fluxes.

profile, There zare,
however, several problenms;
e.g., bursts of magnetic perturbation are observed and wait explanatioas,
Taknig into account of the change of the current diffusivity due to the
instability itself, the magnetic trigger phenomena has been analysed37).
The gquantitative improvemenrt of the modelliang of the viscosity and the
radial currents is also necessary, The model must be extended so that fhe
quantitative prediction of Er is possible, Many further improvement of
confinemnent have been proposed based on the electric bifurcation model.
The verification of the model is surely an important issue,

We here have few room to show how the understanding of the edge

38) in the

plasma confinement is used to confrol/ it. Examples are seen
analysis of the divertor bias, or possibilities to excite the H-mode
transition by the iom beam and to sustain grassy ELMs by externmal oscil-
lations. The control of the edge plasma, e.g., for the good energy con-
finement, efficient pumpinmg, suppression of impurities, or tolerating the
heat load, is an urgent task. The understanding and modelling of edge

plasma are inevitable for it, and the MHD analysis will be very useful,
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Part B
Lecture Hote on Application of HID Theory

to Plasma Boundary Problems in Tokamaks



[I] Introduction

Recently the important roles of the edge plasma have been
widely recognized both on the plasma confinement research and the
design study of fusion reactors. The basic physics approach has
been compiled in Ref.[1] Recent experimental findings, such as
the H-modez), had a large impact in the progress in this field,
as is reviewed in [3]. The core plasma confinement should be
more tightly coupled to the edge plasma conditiom than has been
thought, if we judge from the phenomena like Improved Ohmic
Confinement?’ (I0C), in which the reduction of the gas puffing
rate leads to the peaked density profile at the core. One of the
key features is the sensitivity of the oplasma response to the
change of the locations of the plasma, such as the plasma-wall
distance or the directions of the ion VB drift and Y-point loca-
tion2)'3). ‘These observations indicate the importance to take
the realistic geometry (or alternatively, to find out the key
parameter to characterize the spatial structure) in the modelling
of the edge plasma phenomena. At the same time, various atormic
processes introduce variety of the plasma dynamics in the edge
region, The short mean free paths of atomic processes enhances
the influence of the geometry on the global plasma structure,

Other progress of the research has been seen in evaluation
of the impact of the plasma properties on the design of the
plasma facing component in the future large devices. For

instance, it is well known that the estimation of the heat locali-

zation width is a crucial issue. Also necessary is the evalu-




ation of the dymamic change of the heat load suchk as that in the
large EL¥s (edgze localized modes). These issues also illustrate
the importance of the study on the structure and dynamics of the
edge plasma in a realistic plasma configurations,

In the study of these problems, the analysis based on the
pagnetohydrodynamic (MHD) egquation has been performed. This
equation has the advantage that phenomena of various time scales,
from the Alfven transit time to transport time, cam be treated
and the realistic configuration is more easily taken into account
in comparison with other approaches (such as Vlasov equation),
assuring that the physics coefficient (such as transport
coefficient) and boundary conditions are given.

In this article, we present a brief survey on the problems
for which the analysis based on the fluid equations are success-
fully applied to the edge plasmas, We also discuss the efforts
to extend the model equation to apply more general and important
problems such as H-mode physics. ¥We finally discuss the future
possible investigations. ([It is noted that the terminology of
*MHD equation’ in this article is not the one for the one fluid
ideal MHD equation. Various extensions to the physics processes

are included in terms of the tramsport coefficient, ]



[II] Structure of Edge Plasmas

(2.1) Fluid Equation and Boundary Condition

The plasza and geometry of our analysis are shown in Fig. .
The definition of the ’edge plasma’ has not been made uniguely,
We here consider that the edge plasmas are consist of the plasma
(1) outside of the outermost magnetic surface (i.e., scrape-off
layer) and some in the inside of the outermost magpetic surface,
The latter is the plasma (2) in the region where the inhomoge-
neity along the field line is appreciable or (8) in the region in
which the radial gradient does not scale linearly with minor
radius but is determined by the distance from the surface.

The basic equations consist of the continuity equations of

the density, the momentum and energy as5)

ap/at +V-(pV¥) = Sy (1)
pd¥/dt = -V-I + R + F + S, (2)
a(pES)/at T Ve(EgV) = -I:VV + (RiF)-V - Veoq ¢t Sp (3)

for each plasma species (suffix to identify the species is sup-
pressed for the simplicity), where I is the stress tensor, R is
the frictional force, F- q(E+¥xB), E, = VZ+w, w is the internal
energy per unit mass, Sq Sy SE are the sources of particle,

nomentum and energy, and other notations are conventional. One

fivuid KHD equations use the variables total mass density, p,



velocity of the plasma, V, charge density Py and current density

j, 1instead of Po. i and Ve And the Maxwell equation is used to

i
solve the plasma response and the field.

The MHD equations are not closed by themselves, and we need
to specify the closure such as the eguation of state, the stress
tensor M, and the transport coefficient, and the model of the
sources.

The common choice of the closure is that the parallel trans-
port is classical, only the diagonal part of the stress tensor,
element of which is p=nT, is kept, and Es is approximated by
3p/2. The frictiomal force R is calculated by Spitzer collision
frequency, and interaction between neutral particles are included
in Sp. The classical values are used for the plasma resistivity
7 and parallel thermal transport coefficient 2 . The perpendicu-
lar transport coefficient are considered to be anomalous, and the
prescribed form is substituted in the MHD egquation.

The electrom energy flux g, is given by g,° + qp°% and that

for ion is given by qu, where

a, - -0.71Tgi/e + (3T u,/2eR,)bxi (4)

qp = -x”V%T - lelT +(5nT/2eB)bxVT (3

Vo is the electron collision freguency, Qe is the electron
cyclotron frequency, b=B/B and k=n1,
The particle source can be calculated once the neutral

density is given. (This terz depends on the geometry strongly.



The connection with the computation on neutral dynamics is
discussed in [6,77.)
The boundary conditions at the plasma-material interface are

8,9)

given in the form of the Bohm sheath criterion and energy

transmission coefficient Tt The current across the plasma-

e, 1
wall interface is often assumed to be zero. The extension to the
case where the current flows across the wall, e.g. in the study
of the divertor biasing, is also possible,

In this section, we study the static (equilibrium) structure

in the edge plasmas. Stability and dynamic responses are

discussed in the next sections.

(2.2) Structure Along the Field Line

In studying the structure of the plasma distribution in the
scrape-off‘layer, the competition between the parallel and
perpendicular heat transports is examined. For the plasma
parameter of present experiments, the energy transport along the
field line is the fast process. When the plasma thickness is
parameterized by A, the averaged temperature in the flux tube
with thickness 4 is given by integrating the parallel energy

conduction equation along the field line ale)
1088 =1y, 85 4 7g 0704, (6)

where 2 i1s the distance along the field line from the divertor

plate, the parallel heat flux qﬂ is given as




- 2.5
x‘,l— xOT ,

P,yt is the total emergy outflux to Sol, and the energy
deposition in the Sol plasma is neglected for the simplicity.
Though very simplified, this equation reveals essential
characters of the Sol plasea.

The Bohm sheath criterion gives the plasma parameter in

front of the divertor plasma as

Td = POUt/GTtrout (7'1)

ng = VayTy (B, /B 2mAR) (6T, )3/ 2/VP (7-2)
vhere

thTe+Ti,

G is the enhancement factor of the particle flux in Sol plasma
and rout is the particle flux out of the main plasma. These
parameters Td and n4 are essential in evaluating the performance

of the divertor,

{2.3) Structure Across the Field Line

The parameter A is determined by the cross field energy

transport. The cross field transport is stromger for higher



temperature plasma, the width A is determined by the
perpendicular diffusion near the midplane. TFrom Eq.(6), one sees
that TmLZ/T so that T(8) is approximated to be conmstant Tb near

the mid plame. Solving

K

_ 2
YF = qi(apout/4n ak),

the estimation of A is obtained in [11]. If the cross field
transport is given by the Bohm-like diffusion

1,« T/eB,

1

we havelZ)

Ma = 5k, (LB, /kgaB )4/ Tlcr/p  ()8/1] (8)

where a and R are the mimor and major radius, L is the distance
between midplane and diverfor along the field line and £ =k, T.
The heat flux channel becomes narrower as the power increases.
It is also shown that A does not scale to al. (For instance, if
Pout ™ a3, then A ~ 22/l

The drift heat flux (VTxb term in Eq.(5)) can also affect
the heat channell3). This term depends on the direction of B.
In the configuration like Fig.l with B, directed into the paper,
(i.e.,VB-drift of ions directs to the X-point), this heat flux is

inward of the major radius. The heat flux across the magnetic

surface reduces (outside of torus) or increased (inside of




torus). When the power is deposited mainly at the outside of the
torus, this term reduces the average radial transport, reducing 4

and enhancing Tb.

(2.4) Comparison with Numericsl Simulation

The numerical analysis has been performed in order to obtain
the two dimensional structure of the Sol plasma7’ 14_17). These
calculations can alsc determine the neutral particle profile, and
hence the parameter G. GExample is shown inm Fig.2. It is shown
that the dense and cold divertor plasma is established, and the
neutral particles are localized nearby.

The 2-D computations can now be fluently done, scaling study
is desirable to have a fast grasp of the phenomena. The scaling
study has been performed by using the 2-dimensional numerical

code (assuming the Bohm diffusion coefficient) to givelﬁ)

1.1 0.3% -1 _
13 ~ Tout " Pout o Te a v PoutTout - (9-1)

-0.3

0.5 -0.25 _
out ’ r ' (9-2

oy v Toyf Te,p ™~ Pout out

0.4 -0.23
.Q.T’\:Fout P N 1 A T

-0. 24 0.15 -
out n out Pout (8-3>

where RT and ﬂn are the scale lengths of the radial gradients,
T/T' and n/n’, at the midplane respectively. This result
confirms that the analytic result is a good estimate., If we

eliminate T, 4 from Eq.(9-2), we have



0.4_ -.25
Te,p ™~ Pout Dy .

Analytic theory [Egs. (6) and (8)] gives
4711 -2/11
Ty v Pout™ "'y

showing that the analytical estimate is confirmed by the
simulation. Figure 2 also show that the electron temperature is
almost constant at the plasma boundary, which is assumed in
deriving Eg.(8). We see that the plasma structure is well
understood, and what is really necessary is the understanding of
the cross field transport.

Extension to the impure plasmas has also been performed.
The screening of impurities which are generated from the divertor
wall is also been analyzed quantitatively. Analytic estimates

are also discussed in Refs.[18,19].



[II1] Stability of Edge Plasmas

MHD equation is most successfully applied to the study on
the plasma stability. The edge plasma can have a large pressure
gradient (though the pressure itself is low), the study on the
stability beta limit is important. Another characteristic
feature of the edge plasma from the view point of the MHD
stability is the strong shear associated with the separatrix, and
the location of the I-point. We here briefly survey the findings

of the stability analysis.

(3.1) Ballooning Mode (Ideal MUHD Hode)

The average magnetic curvature at edge of the tokamak plasza
is favourable, i.e., in the "well’ configuration (except the case
where the Y¥-point is outside of the torus). In such a case, the
unstable mode may be localized in the outside of the torus (where
the local bad curvature exists). The wave length aleng the filed
line is long, i.e., k”= b+*V =~ 1/a but the one across the filed
line is short, a/a88>>1/a. For the perturbation ¢(r,8,Z), the

ballooning transformation was introduced as 20)

o9
¢(r, 8, )= EeXP(-ime+nt)jdx¢(1)exp{i(m-nq(r))x] (16D
where q{r) is the safety factor and m and n are the poloidal and
toroidal mode numbers, respectively. (Note 1 is the coordinate,

not thermal conductivity: Behaviour of ¢(x) at 2+« corresponds

to that of #(r) at the ratiomal surface.) ¥We here follow the



notation of Ref.[21]. The Buler eguation for the ideal ¥HD mode
1s written for an ordinary differential equations for high-
toroidal-mode-number modes, which has the large growth rate.
Analytic formula was obtained in the high aspect ratio limit
of the circular plasma. The Euler equation is characterized by

the three parameters, i.e.,

rq’ /q (local shear),

751
[t}

o = -ZquB_zp’ (local pressure gradient)

and

(l-q'z)r/R (average well)

o
It

where "=d/dr., The ballooning equation is simplified as
(a/81)[1+127188/8% + {a(cosy-Tsinz)-6-72(1+12))® = 0, (11)
I= s%-asiny, and 7 is the growth rate which is normalized to VA/R

(vA: Alfven velocity). The instability condition for low s case

1S given as

3/4La’-/ot/2-3206/91 < s < 3/4[el+/ot/2-32a5/0] (12)

showing that the ballooning mode is stable for a<0.8/5 and

>2.2/s (the second stability), Figure 3 illustrates the




stability limit for the pressure gradient (o) as a function of

the shear.

(3.92) Effect of Plasma Digsivation on the Balloonins Mode

In the edge plasmas, the plasma resistivity » is small but
finite, The dissipation process can destabilize the mode for the
regine where ideal MHD mode is predicted to be stable. This
process is important in estimating the beta value at the
stability boundary. (The problem, whether the stability limit
for beta is the experimental 'beta limit’ or not, deserve further
study, and discussed later.)

The effect of the resistivity has been studied in detailzz).

For the finite-resistivity plasza Eq.(11) is reformed as
(a/a)[z/(i+zk 2/78)1a8/ a1 + (ofcosz-Tsinx)-8-272)8 = 0, (18)
where z=1+I(1)2 and ke=ma/r. The eigenvalue equation is now
characterized by the four parameters, s, « @& and 8, where S is
the magnetic Raynolds nunmber,
S=v,.n a2/nR
ARQ :
and vy is the Alfven velocity. For the case of the strong bal-
ooning limit (|sz|<<1), Bq.(13) is approximated by the Weber

Equation, and the growth rate v is determined by

3 1 (2re87? - e - (xg2/28) (a8 = 0. (14)



where 1 is the growth rate in the ideal MHD limit, Ty = o /et/2-
8. It is shown that, in the absence of well (6+0), the mode is
unstable for all value of o« i.e,, the stability beta limit is

zero. (See Fig.4.) The mode growth rate is given as
T (akgl/28)1/8 (15)

for the marginal stability for the ideal mode (7~0). 1In the
presence of the magnetic well, the critical beta for stability
appear below the ideal MHD stability limit as shown in Fig. 4(b),

Simple estimate for stability from Eq. (14) is given by
o < 6. (18)

The importance of the magnetic well was investigated for the
JT-60 plasmé (with outer X-point)zg). Parameter Dp
(DR=a(a-5)/sz} is calculated for outer-X-point configuration and
limiter configuration. (The condition Dp<0 is the stability
criterion from the above simple estimate, Eq.(16).) Compared to
the limiter case, in which Dp 1s negative, the outer-X-point
configuration has large and positive Dp for given pressure
gradient, indicating stronger instability. Experiments has also
shown that the high frequency oscillations appear in the outer-%-
point configuration but not in the limiter case. In this experi-
vent, the appearance of this fluctuations coincides with the

change of the sign of DR' The influence of these oscillations on



the global confinement, however, was not analysed yet.

It is believed that the microscopic (high-n) instabilities
may lead to anomalous transport with “soft beta limit’, and that
the real hard "beta limit’ comes from the development of the
nodes with low-tc-medium mode numbers. The anomalous tranmsport
based on the resistive turbulence has been developed24), bat is
not enough to explain present observations.

The comparison study of the occurrence of the 'Type-I’
ELHszS) corresponds to the stability boundary for the ideal MHD
instability, suggesting the importance of this kind of
instability. Noalinear simulation of the high-m pressure driven
instability has recovered a rapid grow of the mode near the

2). However, the catastrophic pature, such that the sudden

edge
growth of the mode with m~l0 acts as the precursor of Giant

ELHszs), is not understood.

{3.8) Tnstabilities Driven by Atomic Processes

Atomic process is also the characteristic to the edge
plasrpa, and affect the edge stability tremendously.
Global instabilities are known such as MARFEIQ) and

detachment. The radiation loss is modeled such that
SE = -nenIL(Te), (173
where 0y is the impurity density. Since aL/aTe<0 holds for a

range of temperature and the enhanced radiation reduces the

electron temperature, this loss ferm in principle leads to the



instability of the electron temperature, Models on L(Te) and the
dynamic response of ny with respect toc the perturbation are
necessary to quantify the growth rate. The latter is usually

denoted by the parameter
E=- (T /47 /) / (T/T).

Asymmetric thermal instability (m/an=1/0, i.e., BARFE) can grow
iflg)

nlal/aT+el/T] > 3 /(a-ry)? + x,/q%R? (18-1)

([rb,a] is the region of the analysis, where aL/3T is negative

and large) and
enfL/T > x,/q%R2. (18-2)

If Eq.(18) does not hold, the poloidally symmetric mode (m=0/n=0
node, i.e,, detachment) starts to grow.

This picture is often referred to as an origin of the
density limit. If one assumes that ny/n, is constant, Eq.(18-1)
set an upper bound for the electron edge density against the
thermal instability. This theory of z=1 and m=0 modes also
explains the difference of the condition for MARFE and detachment
to appear. Equation (18-2) is more easily satisfied for (1)
lower T, (2) larger device and (8) higher heating power: In

other words, the lighter impurities (for which the condition



aL/aT<0 holds for the lower plasma temperature and Eq. (18-2) is
pore easily satisfied) lead to the MARFE while heavier one to the
detachment (and then disruption): These prediction is consistent
with experiments. The dynamics of impurities needs further
analyses for quantitative comparisons,

The atomic process can also destabilize the microscopic mode

such as drift waveZ7).

For instance, the radiation loss
increases the growth rate by the amount of -njal/8T. If there is
the constant neutral density, then the density fluctuation ¥
gives the source of fluctuation S =v T=n T<cv>. (ny is the
neutral particle density.) This positive feed back enhances the
growth rate of drift like waves by the amount of T, . Estimation
was made that the iomization camn affect the fluctuation level at
edge comsiderably if Tn>5x103 (s_l) for small devices, It should
be noted that in this kind of computations, the demsity of the
neutral particle is assumed to be constant (the parameter 7 is
taken as a constant parameter). This assumption in reality is not
always a good model. The neutral density itself contains the
fluctuating component im the case that the plasma density is
fluctuating: In such a circumstance, simple relation of § =

Tni (Tn>0) is 1o longer valid. Further analysis is required.

(3. 4) Effect of Radial Blectric Field

The sharp gradient of the radial electric field is alsec
characteristic to the boundary plasmas. It can also
affect the stability of the edge plasma and gives rise to the

variety of the transpori properties,



The study on the stabilizing effect of E.” was studied much
in kinetic theories. The electric field gradient can influence
the stability through modifying the ion orbit28730)  ppe ion
Landau damping stabilizes the kinetic mode if {E."/B] > [vp;Vo/n |
is satisfied. Also it can change the direction of the toroidal
drift of trapped particle to favourable direction.

The effect was also studied by MHD equation331’32), in terms
of the shear flow. The shear flow first tends to localize the

radial extent of the mode. Stabilization is expected 1if
Er’kB/Bkr T (197

where L is the Iinear growth rate in the absence of Er’. (If
the inhomogeneity of the velocity shear (d2¥/dr?) is too large,
then the Kelvin-Helnholtz instability is destabilized.) This
stabilizatién reduces the anomalous transport which is caused by
the microscopic instabilities at tﬁe edge, Recent progress has
shown that the mode amplitude is not always reduced by the

33) and the necessity to treat the electric field

velocity shear
in a self consistent manner was pointed out. The intensive study
is under way.

The study in this direction was motivated by the prediction
of the radial electric field at the L- and H-mode transition34)
and its confirmation by experiment335’36). Also revived is the
careful study of the dynamics of the radiel electric field and

plasma rotation. The important role of the ¥iscosity was

recognized, which is discussed in next section.



[IV] Bifurcation Phenomena

(4 1) Finding of the H-mode

One of the most dramatic finding in recent plasma confine-
nent experiments was the H-modeZ). This was the break through
against the degradation of the energy confinement time with
power. And it enlarged the possibility in achieving the ignition
plasma in future devices. At the same time it has cast the
physics picture that the plasma surface has the generic nature
that the multiple states are allowed for given external condi-
tions, that the spatial structure (typical gradient length) can
be free frow the minor radius and that it has a rapid time scale
for the transition. It thus enriched the physics of the confined
plasmas. Efforts have also been made to model these phencmena in
the frame work of the fluid picture of the plasma, and are

illustrated in the following.

(4 9) Bifurcation of the Radial Electric Field and Rotation

After the finding of the H-mode, 2 model was first proposed
that the transport barrier would be made in the SoL37) due to the
electric field along the field line. The experimental study
clarified that the barrier exists inside of the plasma surface.
This model turns out incomplete, but pointed out the possible
important role of the electric field on the tramsport in the edge
plasna.

A possible mechanism of the bifurcetion of the perpendicular

transport was proposed by taking into account the effect of the



34). The basic physics picture was that the gradient-

less cone
flux relation should have the form in Fig.5 to explain the
sequence of the transition (i.e., very rapid reduction of the
outflux at transition followed by the establishment of the
pedestal in the profile) and that this is possible at edge (not
characterized by the separatrix). This model in Fig.5 can be
constructed by inmtroducing a "hidden variable’ E.. The ’'edge
phenomena’ indicates that (1) the gradient a/ar is no longer
linited to the order of 1/a but can be order of 1/(a-r) {i.e.,
OCI/PP) for (a-r) ~ p

p, being the ion poloidal gyroradius],

p’ p
and that the process such as loss cone can affect the global
transport.

To quantify the model, it is necessary to study the nature

of the viscosity term in the basic equation., We write the

Poisson Equation combining with the equation of motionm as
£0£L3Er/at = -e{l"re - Fri - FlC} (20)

where ¢ is the perpendicular dielectric constant, I 1s the

bipolar component of electron flux, Fri is that of ion flux, and
rlc is the loss cone current of ions. These terms are neglected
in assuming II/p by the unit tensor. The stationary sclution is

obtained by solving rre=rri+r10' The term Tlc has the dependence

on Er as

I

o v ppniui£"0'5exp{-:X2} (21)



where vy is the 1ion collision frequency, e£=a/R, E indicates the

effect of orbit squeezing due to the inhomogeneity of Er38), and
X=eErpp/T.

(¥ is equal to the so called poloidal Mach number VpB/vTin if
Vp=Er/Bt') This shows that the loss flux can reduce if E, is
large enough.

Figure 6(a) illustrates the case study that T'., is proportional

to (-n’/n+eEr/Te) such as the ripple diffusion, as

r.

re © -Den[n'/n+eEr/TeL

and rri is neglected. The jump of T is predicted at the critical
gradient

A= pon’ /1 AL (22)

P
and A, is 0(1) as is shown in Fig.6(b). This example shows that
the singularity of the transport property I'lVn] can be explained
by using a continuous funmction of F{Er].

The extension of the model is possible by considering

- .38)

ri The bulk viscosity generates the force on ions in the

poloidal direction as

. 2
Fp A, miniuiq fCX)VP,



where the function f(X) 1839’40)
f(X) =~ 1 (for |X|«<1)

and behaves in the large |¥| limit like
f(I) « exp(-1%) (plateau regime)
£(X) « 172 (Pfirsch-Schluter regime).

Taking this form of Fp, r was calculated. Figure 6(c)

ir

illustrates the balance of Flc = -T confirming that the

ri’
bifurcation can occur at the particular value of the edge
gradient, A, ~ 0(l) and that the edge plasma can have bistable
states for a given condition39). Variety of the bifurcation is
also predicéed. Fhen the electron term T, is negligible, the
transition occurs to the more negative E.. and that to the mode
positive E. takes place if .o is important, Other candidates
such as the VVV term or the turbulence driven flux are also
studied41’42).

Combining the theory that the radial inhomogeneity of E, (or
Vp) can stabilize the microscopic instabilities, the structure of
the established electric field (flow velocity) are considered to
suppress the microinstabilities and associated anomalous
transport. The reduction of the anomalous transport further

improves the confinement inside of the transport barrier, TFigure

7 illustrates the present 'standard model’ for the transition



phenomena at edge, though many part of the elements are still

gualitative yet.

{4 8) Observation of the Structure of Er and VE

The proposal of the electric bifurcation3?) was tested by
experiments, D-III 535) and JFT-2M36) confirmed the establish-
nent of the radial electric field. Also observed is that the
transition can be excited by the radial current driven by the
probe and external circuit43). The layer width 1is of the order

36). Experiments by the electrode have confirmed the

of Py
nonlinear response of the radial current to Er44).

These observations seem to confirm the basic physics model
of the electric bifurcation. However, there still remazin the
rystery., TFigure 8 shows the gradients near edge of the JFT-2K
plasma. Peaks of V{E.|, VI and Vn seem to exist at different
positions. It looks that future progress of the theory is

necessary to understand the internal structure of the transport

barrier,

1f-Sustainin sci tion and ELMs

2’25). Some

Various types of ELMs are kmown in experiments
correlated with the critical gradient of edge pressure against
the ballooning mode, and some is not. In former case, the good
confinement is considered to allow the edge gradient to achieve

the 1imit imposed from the MHD stability. Small and coniinuous

ELMs (‘grassy ELMs’ ) needs different modelling.

is

The bifurcation model predicts a self-sustaining oscillation



45). The hysteresis between

under the constant flux from the core
V¥n and T can generates the oscillation ("limit cycle solution’),
The dynamical equation (20) is solved with Egq. (1) and the model
equation T'[X,Vnl, Simplified model equation can be formulated in

the form of the Gintzburg-Landau Equation as
an/at = (a/ax)D(Y)an/sx, (23-1)
val/at = -N(X, a,n) + pall/x? (28-2)

where D is the effective diffusivity, x=a-r, v is the smallness
parameter of the order of (pi/pp)z, p is the shear viscosity, and
N represents the current e[l +I.;-T. 1 which has the
nonlinearity and depends on both E_. and Va. Introduction of the
shear viscosity allows us to study the radial structure of the
barrier. The transition may occur on one magnetic surface. The
velocity Vp and field E. cannot be discontinuous, and the

transition on a magnetic surface propagates to different magnetic

surface by the ion viscosity. [Note that normalization is used as
x/ppax, D/DO»D, u/Doau, t/(sz/DO)wt

(Dy being the typical diffusivity in the L-phase.)]

A simplified model was studied where N(X,a,0) is given
N(X,g) (g=a/v;) and N(X,g) is modeled by the cubic equation as
in Fig.9(a). It is shown that the set equation (22) predicts the

self-sustaining oscillation for a fixed value of the flux fronm



core. This oscillation (limit cycle solution) is possible in a
limited area in the parameter space., OQOtherwise, either the high-
confinement state (H) or low confinement state (L) is allowed.
Figure 9(b) and (c) illustrate the oscillatory solution of the
out flux, and the radial profile of the effective diffusivity in
H and L phases.

In the time-phase of good confinement, the spatial structure
shows that the reduction of D extends from the surface to the
layer, the characteristic width of which is given p/Dpp. The
diffusion Prandtl number has an important role in determining the
thickness of the transport barrier. Since the value of D(x)
takes the intermediate values of D in L- and H- branches of
Fig.9(a), this layer is also called as the mesophase of the two
states.

These results also illustrates the impeortance of the

viscosity in the dynamics and structure of the edge plasmas,



[V] Suamary and Future Probleas

In this article, we briefly survey the applications of the
MAD theory for the understanding of the edge plasma physics. It
is known that the edge phenomena is strongly geometry-dependent,
and contains various time scales. TFrom this point of view, the
MHD equation is a suitable tocl for modelling the phenomena in
the edge plasmas. It was successfully applied to study the two-
dimensional profile of the plasma, the behaviour of impurities,
and the stability analysis. Recent efforts are to extend the
applicable area by investigating the role of the radial electric
field and the ion viscosity.

We here also stressed that the MHD equations are not closed
by themselves, and need some closure model. It is illustrated in
$IV that the study on the viscosity tensor can largely extend the
area of the application., Many results are shown here to be
dependent on the choice of the anomalous transport cecefficient,
Experimental studies on 2 1in the Sol are in progress as is
reviewed in Ref.[3], and the improvement of our kmowledge can be
expected. At the same time, the research in this direction must
be enforced,

The influence of the atomic processes are also examined in
the MHD analysis by proper choice of the models on the radiation
loss, particle source, CX loss and sc on. A successful example
is seen in the model of ELMs and detachment, and hence gave an
insight for the density limit disruption. The analysis has also
shown that not only the static radiation structure (MARFE) but

also the oscillation anature of the radiationle). Further



analysis would be required for research in this direction with
refined models for the impurity response.

One particular example is the problems in the braided
magnetic field. The separatrix configuration is vulmnerable to
the braiding due to the error field or to the instability. The
destruction of the flux surface is sometimes introduced
artificially in order to control edge plasmas. The braiding at
one hand causes honogeneity, but at the same time gives rise to
the new stiructure,

The MHD stability analysis has made progress, and the
determination for the stability limit is now a well-defined
problem in a realistic geometry and plasma profiles. There are,
however, several problems asscciated with the MHD instability
near edge. Largest one is the problem of the trigger. Bursts of
pagnetic perturbation are observed, suggesting that the dramatic
change of the growth rate., Figure 10 is an example form PBX-MH,
wvhere a sudden growth of the fluctuations within the time of the

order of 10psec46}.

The rate of the change of v, ar/at, can be
estimated by (ar/ag )(ag’ /at). The typical time for the change
of g is required to get a large value of T after the parameter g’
reaches the critical value for instability. This time period
seens too slow compared tc the rise time of bursts. A method o
nodel the trigger problem was proposed in [47]. Another problenm
is the prediction of the stability boundary in the presence of
the plasma dissipation, which dramatically reduce the critical

value. Usual argument is that the dissipative mode only enhance

the anomalous transport but the ideal mode really limits the



beta. This kind of hypothesis must be examined more carefully,

The quantitative improvement of the modelling of the
viscosity and the radial currents is also necessary. It is worth
to extend to the level that the quantitative prediction of B, is
possible, Some of the elements Io ; has been confirmed by
experiments. Figure 11 is the data from TEXTOR on the radial
current due to the bulk Viscosity44). Many further improverment
of confinement have been proposed based on the eleciric
bifurcation model. The verification of the model is surely an
important issue, The study on the time-dependent problems has
shown that the fruitful results are expected from the MHD
approach,

The research on the electric field and viscosity is also
inevitable in promoting the research of the impurity-related
problems. For instance, the thermal instability critically
depends on the parameter (EI/nI)/(?e/Te). Recently, careful
experimental study on the impurity transport was made on
ASDEX48). and it was found that the anomalous transport affects
considerably the impurity flux., It is also known that the
difference of wall material can lead the dramatic difference of
the plasma response. Examples are found in the super H-mode for
Boronized wall (D-III D), change of the current gquench time at
disruption between carbonized wall and Beryllium wall, so on.
Intensive research is required in future.

It is also noted that the study on the edge barrier is the
problem of the self-generating structure across the field. It is

well known that there is a self-generating structure along the



field line, such as the double layer, the width of which is
independent of the system size. The barrier of the H-mode would
be the first example that the cross-field gradient is free from
the system size and reaches its new characteristic length. (The
bifurcation model predicts the length scale with /E?ﬁpp.) It may
reveal the generic nature of the confined plasma and have a
future impact to wider area of the physics.

These studies may lead to the understanding of the more
nysterious nature of the plasma. For instance, the core plasma
profile can be peaked when the edge neutral density changes
through affecting the radial electric field profile®®) (model of
1004)). The interaction between the core and edge plasma has not
been clarified enough.

We here have few room to show how the understanding of the
edge plasma confinement is used to control it. One example is
seen in the analysis of the divertor bia550’51). The other is
the excitation of the H-mode transition by the ion beam52),
the sustenance of grassy ELMs by external oscillations53). The
control of the edge plasma, e.g., for the good energy
confinement, efficient pumping, suppression of impurities, or
tolerating the heat load, are urgent tasks. The proper
podelling of edge plasma is inevitable for it, and the MHD
analysis will still be very useful in the research in this

direction,
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Figure captions

Fig.1 Example of the edge plasma region (model of JFT-2¥
plasma). Thick dashed line dencotes the separatrix magnetic
surface, in which the magnetic surfaces (shown by thin
dotted lines) are nested and closed. Out of the separatrix,
field lines are connected to the divertor region or the
wall. Meshes in the poloidal direction are given for the
two-dimensional computations. Flux surfaces of the core

plasma are not drawn.

Fig. 2 Examples of the plasma and neutral profiles in the Sol

region. Profiles of Te, 1 g and Da are given. (Model

'l:
of JFT-2¥ plasma, the ion ¥B direction is into the X-point,

ths total fiuxes from core are P =0.5M¥ and T

out out

SX1021/SGC, respectively.) (Quoted frem Ref.{1681.)

fFig. 3 Stability-instability boundary for the ideal MHD mode

in the s-&« plane. {(Quoted from Ref.[21].)

Fig. 4 Stability-instability boundary in the s-& piane for the
resistive plasma (a). The effect of the Shafranov shift (B,
=B,/ (i-Acos®)) is taken into account. which stabilizes the
resistive mode in the second stability region. The finite
resistivity extends the unstable region to low beta region.
[There is a narrow stable region near «=0 in case & is

not zero.l (Quoted from Sykes et al., 122].)



Example of the growth rate is shown in (b) in the
presence of magnetic well, The critical beta-limit for
the resistive instability is smaller than the prediction of
ideal MHD theory. The case of $=10% is shown. (Quoted from

Strauss, [22].)

Fig. 5 Schematic model relation of the gradient (Va, VT) and
flux (T, q) for the edge plasma, in order to explain the
rapid change of the energy loss at the onset of H-mode
transition (a). Singularities appear at particular values
of the gradient. The gradient-flux relation for the case of

the slow transition is shown in (b) for the reference.

Fig.6 Balance of the loss cone loss I'1c and electron loss TLe
determines the radial electric field X=eppEr/Ti (a). For
the case of A (small A=ppn’/n), one large-flux solution is
allowed. Multiple solutions are possible for the medium A
case (B and C), and the one small-flux solution is allowed
for large value of A (D). The resultant flux, as a function
of A, is shown in (b). The characteristic response in Fig.5
is recovered. When the electron loss ternm I'ie is
negligible, the ion viscosity-driven flux r.; and Fie
determine the radial electric field (c). The function T'(A)

shows the similar response as in (b).

Fig. 7 Schematic diagram between the radial electric field/

rotation, the radial current., anomalous transport, and



plasma fluxes.

Fig.8 Profile of the gradients of the radial electric field
(a), temperature (b), and density {(c) for the H- and L-mode
in the JFT-2M plasma, Solid lines indicate the result in

the H-mode, and dashed lines are for the L-mode.

Fig. g Model of the effective diffusivity D (D=-T/Vn) as a
function of the gradient parameter g=a/v; (2a). Transition
occurs at points 4 and B°. Twc branches, H and L, are shown,
The intermediate branch (between A and B’ ) are the
thermodynamically unstable branch., The predicted
oscillation, for given constant flux from core, is shown in
(b). The radial shape of D at the two time slices (high-

and low-confinement states) are shown in {c).

Fig. 10 Burst of the magnetic fluctuation was observed prior to
the giant EL¥ in the PBY¥-M. This burst of fluctuation
precedes to the occurrence of the ELM. The rise time of the

fluctuation is of the order of l0usec. (Quoted from [463.)

Fig. 11 Radial current driven by the bulk viscosity was studied

in TEXTOR. (Quoted from [44].)
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