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Excitation of the turbulence in the range of drift wave frequency and zonal flow in

magnetized plasmas is analyzed.  Nonlinear stabilization effect on zonal flow drive is

introduced, and the steady state solution is obtained.  The condition for the onset of

turbulent transport is obtained and partition ratio of fluctuation energy into turbulence and

zonal flows is derived.  The turbulent transport coefficient, which includes the effect of

zonal flow, is also obtained.  Analytic result and direct numerical simulation show a good

agreement.
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1. Introduction

Turbulent transport in high temperature plasmas is one of the main issue in the

modern plasma physics.  Microscopic fluctuations are induced owing to the gradients of

plasma pressure and magnetic field so as to enhance the cross-field transport of energy far

beyond the level that is determined by the binary collision of charged particles.  In the

development of theory and direct nonlinear simulation (DNS) of turbulent transport in

toroidal plasmas, it has been clarified that the plasma turbulence in the range of drift wave

frequency, which we abbreviate 'drift waves' in this article, plays key roles [1,2].  What

is fascinating is that the zonal flow [3], which is constant on magnetic surface but

changes rapidly across magnetic surfaces, are induced by turbulent fluctuations and, at

the same time, suppress the turbulent transport.  The generation of zonal flow has been

confirmed by DNS (see, e.g., [4,5] and review [6] for full description).  Zonal flow in

the core plasma has been observed in experiment very recently [7].  The problem of zonal

flow generation by pressure gradient has wide and deep impact of the plasma physics.

The zonal flow is associated with the vorticity which is almost constant on magnetic field.

That is, a global axial vector field is generated.  The problems of the generation of global

axial vector field from the gradient of scalar field include the geodynamo solar magnetic

field generation or astronomical jet formation [8,9].  The turbulence and zonal flow in

toroidal plasmas give opportunity to investigate this class of problems with theory , DNS

and experimental observation, simultaneously.  Intensive studies of the system of zonal

flow and drift wave turbulence have been performed.  The achievements so far have been

summarized in the review [6].

One of the key issues is the mechanism that regulates the structure of the induced

zonal flows.  The saturation mechanisms of zonal flow have been discussed in the

literature;  while the turbulence is often completely quenched for weakly unstable cases at

the collisionless limit [10-13], stationary states with finite amplitudes of both the zonal

flow and turbulent fluctuations are realized when the plasmas are in highly unstable

states.  The possibility of secondary instabilities has been pointed out[14-18], and the

condensation of micromodes into global modes has been studied by direct nonlinear

simulations (DNS) [19].   Regarding the theoretical formulation of nonlinear processes,

nonlinearity in the self-interaction of zonal flows has also been investigated.  Research

has included the pursuit of the possibility that the zonal flows evolve into a kink-soliton-

like structure [20], the parametric evolution of a plane drift wave [21], and the theory for

the BGK (Bernstein-Greene-Kruskal) solution has also been developed [22-24].

Importance of the random noise to turbulence has been studied (e.g., [25,26]), and

influences of turbulent noise on zonal flow has also been studied [3, 24, 27].  Drift wave

spectrum was analyzed in the presence of zonal flow [28], and dynamical evolution has

also been studied [29].  Although these models provide useful understanding, they are

not free from limitations.  For instance, the accessibility to the kink-soliton-like solution
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from a small initial perturbation in ref. 20 is not clear; the drift waves often develop into

strong turbulence so that the assumption that the plane drift wave will be coherent may be

violated, and the decorrelation time of the drift wave packet is often shorter than the

circumnavigation time of the packet in the zonal flow trough.  Theoretical efforts are still

required for the study of zonal flow structure in cases where drift waves have short

correlation times.  In addition, it is known that the toroidal geometry is crucial in

determining the structure of turbulence and flow [13, 30-32].

In this article, we analyze the nonlinear state of zonal flow which is driven by

fluctuations in the drift-wave-frequency range in toroidal plasmas, in the case that the

autocorrelation times of drift waves are much shorter than that of the zonal flow.  (The

study of such a case is motivated by the DNS of core plasmas for highly unstable cases.

It is clearly shown in ref. 33 that the half width at half maximum of the spectral intensity

of the zonal flow is much narrower than that of turbulence.)  It was shown, for given
fluctuation amplitude in toroidal plasmas, that,   Πθr  (the transport of perpendicular

momentum in the radial direction) shows a nonlinear saturation with respect to the zonal
flow shear, while    Π|| r  (the transport of parallel momentum in the radial direction) does

not [32].  That is, the drive of the zonal flow starts to decrease at high velocity, but the

damping due to the turbulent viscosity of parallel flow does not.  Therefore, the zonal

flow evolves into a nonlinear stationary state, and the stable coherent structure is

obtained.  In this article, the higher-order corrections by zonal flow on the zonal flow

drive is renormalized, and the driving term at an arbitrary magnitude of zonal flow

vorticity is derived.  Based on the nonlinear form of the zonal flow growth rate, the

steady state solution is obtained.  In the collisionless limit, the turbulence level is shown

to vanish while the zonal flow remains at finite amplitude, when instability is weak.  The

critical condition for the onset of drift wave turbulence in the presence of zonal flow is

derived.  This gives a theoretical explanation for the Dimits shift phenomena.  The

turbulent transport , including the zonal flow effects, is obtained.  The partition ratio of

fluctuating field energy among the drift wave turbulence and zonal flow is also obtained.

A comparison with DNS is also made.

2. The model

2.1 Formulation based on drift wave action

We study the system of the drift-wave (DW) turbulence and zonal flow (ZF) in

inhomogeneous and magnetized plasma.  The model dynamical system for the drift wave
action  Nk  and the zonal flow velocity   VZ  has been studied [20].  The drift wave action

 Nk  has been introduced as

   Nk = 1 + k⊥
2ρs

2
2
φk

2
(1)
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where  φk  is the k -Fourier component of electrostatic perturbation of drift waves,   k⊥  is

the wavenumber of drift waves perpendicular to the main magnetic field and  ρs  is the ion

gyroradius at electron temperature.  In this article, the analysis is developed following the
framework which utilizes the coupled equations for  Nk  and   VZ .  (See, for the survey of

methods of analysis for zonal flows, [6].)

The growth of the zonal flow in the presence of the drift-wave turbulence has been

discussed by use of the time scale separation.  The autocorrelation times of the drift wave

fluctuations are assumed to be much faster than the evolution time of the zonal flow.   In

the slow time scale, the evolution of the zonal flow and the drift wave action is governed

by the equation [20]

   
∂
∂t U = ∂2

∂r2
c2

B2 d2k
kθk r

1 + k⊥
2ρs

2
2 Nk – γdamp U , (2)

and by the eikonal equation

    ∂
∂t Nk +

∂ωk
∂k ⋅

∂Nk
∂x –

∂ωk
∂x ⋅

∂Nk
∂k = 0 , (3)

where  U  is the vorticity of the zonal flow

   U = ∂VZ/∂r , (4)

r  is the minor radius,  Nk  is a slow modulation of  Nk , which is induced by   VZ , and

  γdamp  denotes the damping rate of zonal flow by other processes.

We study the case that the zonal flow retains the coherent structure in a time much

longer than the decorrelation time of the drift wave fluctuations.  This 'coherent regime' is

one of the characteristic situation of the DW-ZF system [6], and is observed in various

simulation conditions [13].  Equation (3) is solved by expansion with respect to the

vorticity of the zonal flow as

   Nk = Nk
1 + Nk

2 + Nk
3 ⋅ ⋅ ⋅ (5)

where  Nk
j

 is the j-th order term of  U .  Substitution of Eq.(5) into Eq.(2) provides

   ∂
∂t U = G mΣm

∞

– γdamp U (6a)
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where the m-th order term with respect to  U  in the Reynolds stress is expressed as

   
G m = ∂2

∂r2
c2

B2 d2k
kθk r

1 + k⊥
2ρs

2
2 Nk

m
(6b)

A linear response has been obtained from Eq.(3) as [20]

   Nk
1 = kθU R qr, Ω

∂Nk
∂k r

.  (7)

Here

    R qr, Ω = i
Ω – qrvg r + i∆ωk

 (8)

is the response function,   ∆ωk  is the nonlinear broadening of drift waves,

    vg r = ∂ω/∂k r (9)

 is the group velocity, and the zonal flow has a slow dependence as

   exp iqrr – iΩt .  (10)

(  qr  is the radial modenumber of zonal flow.)

The higher order responses with respect to  U ,   Nk
2

,   Nk
3

,  ⋅ ⋅ ⋅ , can be

calculated from the relation

   Nk
n qr + qr

′ = U R qr + qr
′, Ω kθ

∂
∂k r

Nk
n – 1 qr

′ , (11)

where    Nk
n – 1 qr

′  represents the   qr
′ -Fourier component.  The group velocity    vg r  is an

anti-symmetric function of  k r  for drift waves in this article.  Therefore,    R qr, Ω  has a

symmetry with respect to  k r .  The contributions from the even order terms   Nk
2m

(    m = 1, 2, 3, ⋅ ⋅ ⋅ ) are small from the consideration of symmetry, and the drive of ZF

comes from the odd order terms   Nk
2m + 1

 (    m = 0, 1, 2, ⋅ ⋅ ⋅ ).  In addition, when  qr  is

chosen in the regime where the zonal flow has maximum growth rate, the higher-
harmonics components with   n qr  (    n = 3, 4, ⋅ ⋅ ⋅ ) have large damping rates [6, 34].

Therefore we keep   2 qr -component and have a relation
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Nk

n = U 2 kθ
2 R* qr, Ω

∂
∂k r

R 2qr, Ω′
∂Nk

n – 2

∂k r
, (12)

where  Nk
n

 is the abbreviation of  Nk
n qr .

2.2 Linear Response

The first order term gives the diffusion-like form

   γZ = Drrqr
2 = – Drr ∂

2/∂r2  (13)

in Eq.(2) with

   
Drr = – c2

B2 d2k
R qr, Ω kθ

2k r

1 + k⊥
2ρs

2
2

∂Nk
∂k r

, (14)

i.e., the zonal flow growth [3].   In a strong turbulence limit,     ∆ωk >> qrvg r ,

   R qr, Ω ∼ 1/∆ωk . (15)

The partial integral of Eq.(14) gives an evaluation

   
Drr = c2

B2 d2k
kθ

2

1 + k⊥
2ρs

2
2
∆ωk

Nk . (16)

Next, the most unstable wavenumber of the zonal flow is considered.  The zonal
flow growth rate   γZ  does not continue to increase at larger  qr  when the dispersion effect

of the beat drift waves on the zonal flow is introduced.  A finite-  qr  correction to

   R qr, Ω  is evaluated in the large   ∆ωk  limit by expanding    R qr, Ω  to

    
R qr, Ω = 1

∆ωk
1 –

qrvg r

∆ωk

2

+ ⋅ ⋅ ⋅ , (17)

and   γZ  is written as
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   γZ = Drr qr
2 1 – qr

2/K0
2 , (18)

where

    K0
2 = ∆ωk

2 vg r
– 2

 (19)

represents the characteristic scale where the Doppler-shift of drift waves suppresses the
zonal flow instability.  An explicit form of   K0

2  for the case of tokamak plasmas is given

in ref. 21.  It should also be noted that the expression (2) is drawn with the condition that
  qr < k r .  The analysis in the case of    qr ∼ k r  was reported based on a modulational

instability, showing that the zonal mode drive vanishes if   qr > k r  [35].  We have

    K0 = min k r, ∆ωk/vg r . (20)

The damping term    γdamp U  includes the collisional damping term    νdamp U .  An

additional damping mechanism exists.  The    E × B  flow in toroidal plasma is associated

with the secondary flow.  As is shown in refs. 30-32, the viscous damping of the

secondary flow due to toroidicity governs the damping rate of the zonal flow, in addition

to the conventional collisional damping.  The damping rate by this process is rewritten as

[31]

   γdamp = µ || 1 + 2q2 qr
2 , (21)

where   µ ||  is the turbulent shear viscosity for the flow along the field line and q  is the

safety factor.  (The coefficient   1 + 2q2   is replaced by    1 + 1.6q2/ ε  in the collisionless

limit [36].  This dependence on the collisionality is not considered for simplicity.)

Combining this damping associated with parallel flow, the damping rate is expressed as

   γdamp = νdamp + µ || 1 + 2q2 K 2 . (22)

And an explicit form of   νdamp  is given in, e.g., [6],

   νdamp ∼
ν ii
ε (23)

in the banana regime.

Combining these results, the linear terms in Eq.(2) are rewritten as
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   ∂
∂t U + Drr

∂2

∂r2 U + K0
– 2 ∂4

∂r4 U – µ || 1 + 2q2 ∂2

∂r2 U + νdamp U = 0 .

(24)

This equation predicts a necessary condition for the zonal flow growth with the
wavenumber  qr  at which the linear growth rate of zonal flow takes the maximum value.

The zonal flow has a maximum growth rate at

   qr = qr * =
1 – µ

2 K0 (25)

where

   µ ≡ µ || 1 + 2q2 Drr
– 1 . (26)

The condition that the zonal flow has positive linear growth rate is given as

   1 – µ > 2
νdamp

DrrK0
2 . (27)

Both the zonal-flow driving coefficient  Drr  and the shear viscosity   µ ||  are given by drift

wave spectrum  Nk .  The ratio    µ ≡ µ || 1 + 2q2 Drr
– 1  is a function of the spectral shape of

drift wave turbulence and geometrical factor such as q , the inverse aspect ratio ε , etc..

2.3 Third order correction

The third order term of the deformed action is given as

   
Nk

3 = U 2 kθ
2 R* qr, Ω

∂
∂k r

R 2qr, Ω
∂Nk

1

∂k r
. (28)

Substituting Eq.(28) into Eq.(6b), one obtains the third order term in the RHS of Eq.(2)

as

     
   

G 3 = ∂2

∂r2
c2

B2 U 2 d2k
kθ

3k r

1 + k⊥
2ρs

2
2 R* qr, Ω

∂
∂k r

R 2qr, Ω′
∂Nk

1

∂k r
. (29)
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In a strong turbulence limit,     ∆ωk >> qrvg r , which gives an estimate Eq.(16) through

partial integral, the RHS of Eq.(29) is evaluated as

   
G 3 = – ∂2

∂r2
c2

B2 U 2 d2k
kθ

3

1 + k⊥
2ρs

2
2 R* qr, Ω R 2qr, Ω′

∂Nk
1

∂k r
. (30)

The partial integral is performed once again.  Noting the relation

   
∂
∂k r

R* qr, Ω R 2qr, Ω′

1 + k⊥
2ρs

2
2 ∼ –

H
∆ωk

2
k rρs

2

1 + k⊥
2ρs

2
2 (31a)

with a coefficient

    
H = 2

1 + k⊥
2ρs

2
+

6qr
2

∆ω2ρs
2

∂vg
2

∂k r
2 , (31b)

(where the second term in the RHS of Eq.(31b) is a finite wavenumber correction), we

have an estimate of the third order term as

   
G 3 = – ∂2

∂r2
c2

B2 d2k
Hkθ

2ρs
2 U 2

∆ωk
2

kθk r

1 + k⊥
2ρs

2
2 Nk

1

   = ∂2

∂r2 D3 U 3 (32)

where the diffusion coefficient in the third order term is given as

   
D3 = – c2

B2 d2k
Hkθ

2ρs
2

∆ωk
2

kθk r

1 + k⊥
2ρs

2
2 Nk

1
. (33)

Comparing Eq.(33) with Eq.(16), we finally have an estimate of the diffusion coefficient

of the third order term as

   
D3 ∼ –

Hkθ
2ρs

2

∆ωk
2 Drr (34)

The sign in the definition of   D3  is chosen such that   D3  is positive when  Drr  is positive.
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Taking into account Eqs.(24) and (32), Eq.(2) is written in an explicit form as

     
   ∂

∂t U + Drr
∂2

∂r2 U + K0
– 2 ∂4

∂r4 U – D3
∂2

∂r2U 3 – µ || 1 + 2q2 ∂2

∂r2 U + νdampU = 0

(35)

up to the third order with respect to  U .

2.4 Renormalization of higher order corrections.

Equation (35) allows to study the radial structure of the nonlinear solution.  The
expansion parameter is    Hkθ

2ρs
2U 2/∆ωk

2  in deriving Eq.(35).  The truncation at the third

order may not be appropriate if

   Hkθ
2ρs

2U 2 > ∆ωk
2  (36)

holds.  Therefore, the third order formula is not relevant for the study of the Dimits shift,
where the fluctuation level is very low so that    ∆ωk

2  is small.  In order to study the case of

an arbitrary ratio of    Hkθ
2ρs

2U 2/∆ωk
2 , we must keep all order of  U .  In this subsection,

we discuss the renormalization of the driving term 
   

G 2m + 1Σ
m = 0

∞

.

The radial wavelength of the zonal flow is taken as    2π/qr * , and is treated as a

parameter in this subsection.  By employing this simplification, we derive a recurrence

formula between   G 2m + 1  and   G 2m – 1  in the following.  The (   2m + 1 )-th order term

of Eq.(6b) is written as

   
G 2m + 1 = – qr

2 c2

B2 d2k
kθk r

1 + k⊥
2ρs

2
2 Nk

2m + 1
(37)

and is rewritten as

     

   
G 2m + 1 = – qr

2 c2

B2 d2k
kθ

3k r

1 + k⊥
2ρs

2
2 U 2 R* qr, Ω

∂
∂k r

R 2qr, Ω′
∂Nk

2m – 1

∂k r
.

(38)

In the case of the strong turbulence, Eq.(15), the similar argument as Eq.(16) is

employed for Eq.(38).  Thus, performing a partial integration twice, one has
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G 2m + 1 = qr

2 c2

B2 d2k
Hkθ

2ρs
2 U 2

∆ωk
2

kθk r

1 + k⊥
2ρs

2
2 Nk

2m – 1
. (39)

That is, one obtains a relation between   G 2m + 1  and   G 2m – 1  as

   
G 2m + 1 ∼ –

Hkθ
2ρs

2 U 2

∆ωk
2 G 2m – 1 . (40)

The result Eq.(40) indicates that the ratio 
  

G 2m + 1 /G 2m – 1  diverges as

   ∆ωk → 0  for a fixed value of  U .  However, such singular behaviour does not occur.

This is because the decorrelation between the drift wave packet and the zonal flow is not
given by   ∆ωk  but by other processes, when   ∆ωk  approaches zero.  Therefore we put

   
G 2m + 1 ∼ –

Hkθ
2ρs

2 U 2

Γ2 G 2m – 1 as    ∆ωk → 0 (41)

where Γ  is the decorrelation rate between zonal flow and waves in the small   ∆ωk  limit.

One decorrelation process is the Doppler shift, and    qrvg r  plays a role that limits the

resonance between zonal flow and drift waves.  The other relevant frequency is the
bounce frequency   ωb  of the drift wave packet in the trough of the zonal flow [22],

   
ωb

2 =
2ρs

2kθqr

1 + ρs
2kθ

2 ωk U . (42)

That is, Γ  scales with     max ωb, qrvg r .  The quantitative determination of the

proportionality constant between Γ  and     max ωb, qrvg r  requires the detailed analysis of

the turbulent trapping regime, such as the granulation formalism [37].  Thus we choose

here

    Γ = max ωb, qrvg r . (43)

It should be noticed that Eq.(40) does not mean   G 2m + 1  remains finite as    ∆ωk → 0 .  It

means that the ratio 
  

G 2m + 1 /G 2m – 1  remains finite.  In the limit where    ∆ωk = 0  holds

and the trapping of wavepacket occurs, the net driving force of the zonal flow can vanish

and the solution can be given by BGK (Bernstein-Greene-Kruskal) solution.  Within the

framework of the model of this article, Eq.(14) indicates that   G 1  vanishes (so does
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  G 2m + 1 ) as    ∆ωk → 0 .  Thus this model provides renormalization in the case of finite

  ∆ωk  and partly recovers the property in the limit of wave trapping.  Taking a Pade

approximation, one has an interpolation formula as

   
G 2m + 1 ∼ –

Hk θ
2ρs

2 U 2

∆ωk
2 + Γ2 G 2m – 1 . (44)

That is,

   
G 2m + 1 ∼ – 1 m U 2

∆ωk
2 + Γ2

Hkθ
2ρs

2

m

G 1 . (45)

By use of the formula Eq.(44), the summation 
   

G 2m + 1Σ
m = 0

∞

 can be calculated.  We have

the renormalized driving term for the zonal flow as

   
G 2m + 1Σ

m = 0

∞

= G 1

1 +
Hkθ

2ρs
2U 2

∆ωk
2 + Γ2

. (46)

In Eq.(46), the nonlinear correction up to all orders are included.  The evolution equation

for the zonal flow Eq.(6a) is then written as

   ∂
∂t U =

qr
2Drr

1 +
Hkθ

2ρs
2U 2

∆ωk
2 + Γ2

U – µ || 1 + 2q2 qr
2 + νdamp U . (47)

3. Nonlinear radial eigenmode in collisionless limit

In this section, we study the nonlinear eigenmode of zonal flow for given drift

wave fluctuations by keeping the third-order nonlinear term.  We take a limit of

  νdamp → 0 , (48)

because the role of the nonlinear stabilization term in Eq.(35) is studied.  We use

normalized variables

  x= r/L ,    τ = t/tZ  and   u = U/U0 , (49)
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where

   L– 2 = K0
2 1 – µ ,    tZ = Drr

– 1 K0
– 2 1 – µ

– 2
 and    U0

2 = Drr D3
– 1 1 – µ .  (50)

Equation (35) is rewritten as (   νdamp → 0 )

   ∂
∂τ u + ∂2

∂x2 u – ∂2

∂x2 u3 + ∂4

∂x4 u = 0 . (51)

The short wavelength components with   qr
2 L2 > 1  are stabilized by the higher-order

derivative term.  The flow is generated in the long wavelength region of

   qr
2 < K0

2 1 – µ , (52)

and the zonal flow energy is saturated by the nonlinearity and by the dissipation through

higher-order derivatives.

We investigate a case that the flow is generated from the state with small noise

level where no net flow exists,

  dx u = 0 .  (53)

Conservation of total momentum holds for the periodic boundary condition and the flow

evolves satisfying the condition   dx u = 0 .  Stationary solution of Eq.(51) in the

domain   0 < x < d , for the periodic boundary condition, is given by an elliptic integral as

   1 – 2u2 + u4 – κ2
– 1/2

du = ± x
2

, (54)

where κ  is an integral constants satisfying   0 ≤ κ < 1 .and is determined from the

periodicity

   
1 – 2u2 + u4 – κ2

– 1/2
du

– u c

u c

= d
2 2n

, (55a)

where

   uc = 1 – κ , (55b)
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and    n = 1, 2, 3, ⋅ ⋅ ⋅ .

The temporal evolution of Eq. (51) is solved numerically.  Starting from an initial

condition with small random values, a stable steady state is reached.  It is shown that the

growth is dominated by the component which has the largest linear growth rate. That is,
the integer n  is given by the one which is closest to

   d/n = 4 2π .  (56)

Figure 1 illustrates the stable stationary state.  The peak value of  u x  is given as

   uc ∼ 0.95 .  Compared to a simple sinusoidal function (eigen function of linear operator),

the result in Fig.1 has much weaker curvature at the peak and is closer to a piece wise

constant function.

The stationary state is realized by the balance between the drive of zonal flow
through    dΠθr/dr  and the damping through    dΠ|| r/dr .   (     ΠΠ  is the Reynolds stress.)  The

   dΠθr/dr  term is composed of the second and third terms in the LHS of Eq.(35) (having

coefficients  Drr  and   D3 ).  The    dΠ|| r/dr  term corresponds to the 4th term in the LHS of

Eq.(35), having coefficients   µ || .  When the zonal flow amplitude is small and Eq.(27)

holds, the drive by    dΠθr/dr  exceeds the damping by    dΠ|| r/dr  so that the zonal flow

grows.  When the ZF amplitude increases, the nonlinear term in    dΠ|| r/dr  becomes

effective, and    dΠθr/dr  starts to decrease.  At the amplitude of zonal flow where

   dΠθr/dr + dΠ|| r/dr = 0  holds, the zonal flow reaches the stationary state.

4. Self-consistent state

Based on the analysis of the stationary coherent structure of zonal flow, we study

the self-consistent state for the DW-ZF system.  The condition for the excitation of drift

waves in the presence of zonal flow and the energy partition of between the drift wave

and zonal flow is discussed.  Then the transport coefficient by drift wave turbulence,

where the effect of zonal flow is included, is derived.

4.1. Model of coupled equations

4.1.1 Low-degree-of-freedom model

The self-consistent state of zonal flow and drift wave has been studied

theoretically by solving the evolution of the spectrum of drift waves [28].  The studies

have shown that a low-degree-of-freedom model, such as predator-pray model, is useful

in giving a qualitative understanding of the self-consistent state.  In addition, the study of

the nonlinear radial wave form in §3 gives us the result that the structure is well

represented by a few parameters like amplitude and periodicity length.
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Based on the results in Section 3, we choose the periodic length    2πqr
– 1  of the

zonal flow as

   qrρ i ∼
1 – µ

2 K0ρ i , (57)

and employ the dynamical equation in which  qr  is treated as a parameter.  Under this

circumstance, the equation for the amplitude of the zonal flow is then given as Eq.(47).

By use of this simplification, both the collisionless case and the weakly collisional case is

studied here.

The back interaction of the zonal flow on drift wave turbulence has been discussed

in detail.  In order to show the argument with analytic transparency, we choose a simplest

model for the evolution of drift wave amplitude after [3, 38] as

   ∂
∂t φ

2 = γLφ
2 – αφ2W – ∆ω φ2

, (58)

where   γL  is the growth rate of the turbulence energy and φ  is the normalized fluctuation

amplitude

   
φ2 =

k⊥
2 Ln
k θ

2
eφ
T

2

, (59)

and  φ  is an amplitude of drift wave fluctuations,  γL  is the linear growth rate, the

nonlinear damping rate  ∆ω  shows the effect of the nonlinear interactions within drift

wave turbulence, the rate α  that satisfies

   2Drrqr
2 = αφ2

(60)

is used according to the convention of [3], and

   W = U/ω*
2

(61)

is the normalized square amplitude of the zonal flow vorticity.

With a similar procedure, Eq.(47) is rewritten as

   ∂
∂t W =

αφ2

1 +
Hk θ

2ρs
2ω*

2

∆ωk
2 + Γ2 W

W – µαφ2 + 2νdamp W (62)
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where    µ || 1 + 2q2 qr
2  term is rewritten as   µαφ2

 by use of Eqs.(26) and (60).

Equations (58) and (62) form a set of coupled dynamical equations for the DW-ZF

system in a reduced model.

4.1.2 Evaluation of the nonlinear damping term
We here estimate   ∆ωk  in various cases.  In the strong turbulence limit of drift

wave fluctuations,   ∆ωk  is estimated as [1]

   ∆ωk ∼ B– 1k⊥
2 φ . (63)

It is rewritten as

   ∆ωk ∼ ω*φ .  (64)

by use of the normalized drift wave amplitude.  In a weak turbulence limit, one has

   ∆ωk ∼ ω*φ
2

(65)

4.1.3 Coupled dynamical equations

 The relation between the fluctuation level and nonlinear decorrelation rate, Eq.(64)

or Eq.(65), closes the set of equations.  The nonlinear damping rate by drift wave

turbulence is chosen here as Eq.(64) for the strong turbulence.  By this simple model ,

Eqs.(58) and (62) take forms as

   ∂
∂t φ

2 = γLφ
2 – αφ2W – ω*φ

3
, (66)

and

   ∂
∂t W =

αφ2

1 +
Hk θ

2ρs
2ω*

2

ω*
2φ2 + Γ2

W

W – µαφ2 + 2νdamp W , (67)

respectively.  The set of equations (66) and (67) describes the partition of fluctuation

energy into drift waves and zonal flows.

4.2 Solution and energy partition

4.2.1 Domain of solutions
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Equation (67) gives the condition for the stationary state for the zonal flow.
Putting    ∂/∂t = 0  in Eq.(67), one has

   Hk θ
2ρs

2ω*
2

ω*
2φ2 + Γ2

W =
αφ2

µαφ2 + 2νdamp

– 1 , (68)

or

  W = 0 . (69)

From Eq.(68), one sees that the nontrivial solution    W ≠ 0  is allowed for

  φ2 = φth
2

(70)

where

   

φth
2 =

2νdampα– 1 – g + µw + 2νdampα– 1 – g + µw
2

+ 8 g + 1 – µ w νdampα– 1

2 1 – µ
,

(71)

and abbreviations are:

   g = 1 – µ Γ2ω*
– 2 ,    w =Hk θ

2ρs
2ω*

2 W (72)

The zonal flow grows as   φ2 > φth
2

, and damps for   φ2 < φth
2

.  Figure 2 illustrates   φth
2

 as a

function of the zonal flow vorticity for various values of collisional damping.

Equation (71) provides various limiting results.  In a limit of small zonal flow
vorticity,    W → 0 , Eq.(71) takes a form

  
φth

2 =
2νdamp

1 – µ α
(73)

which shows that the fluctuation level is regulated by the damping rate of the zonal flow.

This recovers the previous result, although a screening factor by the return flow is

included in Eq.(73).
The other limit of interest is the collisionless limit,   νdamp/α → 0 .  In this case,

Eq.(71) takes a form
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φth

2 =
µHk θ

2ρs
2

1 – µ
W – Γ2

ω*
2 . (74)

This result has two specific features.  First,   φth
2

 vanishes at a critical vorticity of

zonal flow,

  U = Uc , (75a)

where

   
Uc

2 =
1 – µ

µHk θ
2ρs

2
Γ2 , (75b)

i.e.,

   

Uc = max
2 1 – µ

µH
,

2 1 – µ

µH
k rρs qrVd , (75c)

where use was made of Eqs.(42) and (43).  (   Vd  is the diamagnetic velocity).  In the RHS

of Eq.(75c), the first term in the parenthesis is given when Γ  is evaluated by   ωb  and the

second one is given when Γ  is evaluated by     qrvg r . Equation (75a) means that the

growth of zonal flow remains marginal at this critical vorticity even in the limit of small

drift wave fluctuation level.  This nonlinear balance at the limit of weak drift wave

fluctuations is related to the Dimits shift problem, and is discussed in later subsections.

Next, Eq.(74) provides a law of power partition between zonal flow and drift

waves.  In a limit of strong turbulence,   φth
2 >> Γ2 ω*

– 2 , or   U >> Uc , Eq.(74) gives a

relation

   
φth

2 =
µHk θ

2ρs
2

1 – µ
W . (76a)

This relation in the limit of strong turbulence is rewritten in a dimensional form as

   
U =

k⊥
2 cs

µH k θ

eφ
T

.  (76b)

4.2.2 Stationary solutions
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We next consider the balance between the drift wave amplitude and that of the

zonal flow.  The stationary state of drift wave turbulence is given from Eq.(66)

   φ =
γL

ω*
– α
ω*

W , (77)

or

  φ2 = 0 .  (78)

Combining Eq.(71) with Eq.(77), the self-consistent solution is obtained.  Figure

3 illustrates the self-consistent solution schematically.  Owing to the kink of the boundary
of Eq(71) at    U ∼ Uc , there arise three regions.

In the region of small growth rate of drift waves,

   γL

ω*
<

2νdamp

1 – µ α
, [region I] (79)

there is no crossing of lines (71) and (77).  Therefore, only the solution Eq.(69) is

allowed, and one has the solution

   φ =
γL

ω*
,  [region I] (80a)

with

  W = 0 . (80b)

The zonal flow is not excited, and the turbulence level is not influenced by the zonal flow.

In an intermediate region,

   2νdamp

1 – µ α
<
γL

ω*
<

2νdamp

1 – µ α
+ α
ω*

Uc
2  [region II] (81)

the boundary for the stationary zonal flow is given by Eq.(73).  The collisional damping

controls the steady state solution.  In region II, analytic forms of fluctuation level and

zonal flow amplitude are
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φ =

2νdamp

1 – µ α
, [region II] (82a)

and

   
W =

γL
α –

ω*
α

2νdamp

1 – µ α
, (82b)

respectively.  In this region, the zonal flow amplitude increases as  γL  increases, but the

turbulence level is unchanged.  The fluctuation level   φ2
 is proportional to the collisional

damping rate of the zonal flow.  This reproduces the preceding result of theory and DNS

observations [10, 21, 29].

When the growth rate becomes larger,

   γL

ω*
>

2νdamp

1 – µ α
+ α
ω*

Uc
2 , [region III] (83)

Eq.(76) describes the balance of the zonal flow.  The self-nonlinear damping of the zonal

flow dominates the steady state. In a strongly unstable limit,

   γL

ω*
>>

2νdamp

1 – µ α
 and   U >> Uc (84)

one has

   
φ =

γL
α

µHkθ
2ρs

2

1 – µ
, [region III] (85a)

and

   W =
γL
α . (85b)

When the growth rate becomes larger, the zonal flow velocity and the fluctuation level
increase as  γL  increases.

Figure 4 summarizes the characteristic domains in the parameter space.  Figure 5
illustrates the wave amplitude φ  and the zonal flow vorticity    U/ω*  as a function of the

growth rate.  Figure 5(a) illustrates the case in the presence of the collisional damping of
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the zonal flow.  Three regions appear.  Figure 5(b) shows the collisionless limit.  In this

case, the region I disappears, and transition between regions II and II are seen.

4.2.3 Collisionless limit and upshift of excitation boundary

Here, the problem of the upshift of the critical condition in terms of the linear

growth rate is discussed.  In the collisionless limit,

  νdamp → 0 , (86)

Eqs(74) and (77) provide a steady-state solution as

     

   

φ =

–
µHkθ

2ρs
2ω*

1 – µ α
+

µHkθ
2ρs

2ω*

1 – µ α

2

+ 4
µHkθ

2ρs
2

1 – µ

γL

α
–
Γ2

ω*
2

2 , (87)

if the growth rate exceeds a critical value

   
γL > γL, c ≡

1 – µ α

µHkθ
2ρs

2

Γ2

ω*
2 . (88)

Below this critical growth rate,   γL < γL, c , we have

  φ = 0 . (89)

In the vicinity of the critical condition,   γL ∼ γL, c , Eq.(87) provides

  φ = 1
ω*

γL – γL, c . (90)

From Eq.(90), one sees that the drift wave fluctuations are, in the limit of

vanishing collisional damping of the zonal flow, sustained at finite levels when the
growth rate of modes   γL  exceeds a finite threshold value   γL, c .  This is a theoretical

explanation for the Dimits shift, which has been observed in numerical simulations.  In
the limit of large growth rate,   γL >> γL, c , Eq.(85a) is reproduced from Eq.(87).

4.2.4 Partition of energy between DW and ZF

Combining Eqs.(71) and (77), the amplitudes of the zonal flow and drift waves

are determined simultaneously.  Thus the partition of energy between the zonal flow and

wave turbulence is given.  The partition of energy is evaluated by the ratio   VZF
2 /VDW

2
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where   VZF  is the velocity of zonal flow,    k θqr
– 1Vd W , and   VDW  is the fluctuating

   E × B  velocity of drift wave fluctuations,    k θk⊥
– 1Vdφ .  This ratio is given as

   VZF
2

VDW
2 =

k⊥
2

qr
2

W
φ2 = 4

1 – µ
k⊥

2

K0
2

W
φ2 . (91)

In the strong turbulence limit in the region III, one has a relation from Eq.(76),

and the energy partition is given as

   VZF
2

VDW
2 = 4

µHk θ
2ρs

2

k⊥
2

K0
2 . (92)

The flow energy and wave energy are proportional to each other   In the strong turbulence

limit, the energy can be converted into flow energy more than to the wave fluctuation

energy if    k θ
2ρs

2 < 4/µH  holds.

4.3 Turbulent transport coefficient

The analysis in §4.2 gives an insight of the turbulence and turbulent transport.

The ion thermal conductivity is deduced for the drift wave turbulence which is dressed by

zonal flows.  The ion thermal conductivity is evaluated as [1]

   χ i = ∆ωkk r
– 2 . (93)

By use of the dependence of   ∆ωk  on the amplitude of drift wave fluctuations, Eq.(64),

 χ i  is evaluated as

    
χ i =

k θ
k r

2ρ i

v thiρ i
2

Ln
φ . (94)

The quantity     k θ/k r
2ρ i v thiρ i

2Ln
– 1  is the so-called gyro-Bohm diffusion coefficient.

Equations (80a), (82a) and (85a) show the fluctuation amplitude as a function of the

growth rate in various regions, showing the effects of zonal flow.

The thermal conductivity in the case of the weak growth rate of drift waves and

strong damping of zonal flow [region I] is given from Eqs.(80a) and (94) as

   χ i =
γL

k r
2 . [region I] (95)
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In this case, there is no zonal flow in the steady state, and this agrees with the case of

'bare' drift waves.  When growth rate of drift wave becomes larger (and yet the

collisional damping dictates the zonal flow) [region II], the conductivity is given as

   
χ i =

2νdamp

1 – µ α

ω*

k r
2 . [region II] (96)

In the collisionless limit, the region I disappears, and the transport in the region II

vanishes as is shown by Eq.(96).  The thermal conductivity becomes finite in the region

III, and is given as

      

   

χIII =
µHkθ

2ρs
2ω*

1 – µ α

– 1 + 1 +
4 1 – µ α

µHkθ
2ρs

2ω*
2

γL – γL,c

2
ω*

k r
2 .

[region III] (97)

The transport coefficient   χ III  becomes finite,   χ III ≥ 0 , for   γL ≥ γL,c .  In this

collisionless case, in the vicinity of the nonlinear onset condition   γL ∼ γL, c ,  a Eq.(97)

provides a simplified expression of the transport coefficient as

   
χ i =

γL – γL, c

k r
2 . (98)

One might be interested in more specific case studies.  In the framework that the
wavelength is much longer than  ρs  and    k rρs << 1 , in small   ∆ωk -limit, the decorrelation

between drift wave and zonal flowis determined by the wave-bounce frequency.  We

have

   
Γ2 =

2ρs
2k θ

2qr

1 + ρs
2k θ

2 2 Vd U , (   U > Uc ) (99)

from Eq.(42), and the critical vorticity is given from Eq.(75c) as

   Uc = 2 1 – µ /µH qrVd .  (100)

At this critical vorticity,   ωb  and Γ  are evaluated as
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Γ =

4 1 – µ

µH
ρsqr

1 + ρs
2k θ

2 ω* . (101)

Substituting Eq.(101) into Eq.(88), the critical growth rate is evaluated as

   
γL, c =

4 1 – µ 2

µ2H 2
qr

2

kθ
2 α . (102)

The boundary for the onset of turbulence has a dependence as    γL, c ∝ qr
2 k θ

–2 α  with a

numerical factor.
For practical usage, it is useful to have an interpolation formula of  χ i  in these

three regions.  In regions I and II,  χ i  may be fitted as

   

χ i = χI + II ≡

γL

2νdamp

1 – µ α

γL +
2νdamp

1 – µ α
ω*

ω*

k r
2 . (103)

This type of interpolation formula has been derived in, e.g., [39].  A possible fitting

formula for all three regions is

   χ i = χ I + II
2 +χ III

2 Θ γL – γL, c (104)

where   Θ γL – γL, c  is a Heaviside function,   Θ γL – γL, c = 1  for   γL > γL, c  and

  Θ γL – γL, c = 0  for   γL < γL, c .  This formula covers both the collisional regime

(regions I and II) and the self-nonlinearity regime (region III), including the property like

Dimits shift.

The thermal conductivity in the presence of zonal flow in regions II and III,

Eqs.(96) and (97), is much reduced, in comparison with the case of 'bare' drift waves

(i.e., ZF neglected), for which Eq.(95) is given.  The reduction factor,  in regions II and
III,   R , can be defined accordingly [40].  An example of transport coefficient in explicit

form is discussed in the appendix.

4.4 Comparison with nonlinear simulation

4.4.1  Global parameter dependence

It is worthwhile to compare these theoretical results with DNS.  The result is

tested to the result of a three-dimensional nonlinear simulation of the ion-temperature-
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gradient (ITG) mode turbulence based on two fluid models [13].  In this simulation, the

dynamics of the electrostatic potential, ion temperature and ion parallel velocity are

followed in toroidal geometry with an assumption of adiabatic response for electrons.
Radial width of simulation domain is    120ρ i  and a realistic ITG dynamic was obtained by

switching off the unrealistically high parallel fluid heat conduction.  Parameters are
   εn ≡ 2Ln/R = 0.9 ,   Ln/LTi = 3.1 ,   q = 1.4  (   q = 0.7  for zonal flow component in order to

reduce the damping of zonal flow), and   s = 0.8 .  (  Ln  and  LTi  are gradient scale lengths

of density and temperature, respectively and s : magnetic shear).  Details are explained in

[13].

In the analytic theory, the ITG mode is characterized by the modenumber

   kθρ i ∼
1
3 , (105a)

and

   k θ ∼ k r . (105b)

This set of parameters, Eq.(105), is chosen as an input to this theory, and the level of

zonal flow is analytically estimated, and is compared with the result of DNS.
In this subsection, we derive the relation between  U  and  χ i , because these

values of parameters are reported in DNS results [13].   In the unit of    Vdρ i
– 1 , the zonal

flow vorticity is given by    U =k θρ i W Vdρ i
– 1  where   Vd  is the diamagnetic drift velocity.

By use of Eq.(105a), we have

   U =1
3 W Vdρ i

– 1 , (106a)

and the relation

    χ i = 3 φ v thiρ i
2Ln

– 1  (106b)

is deduced from Eq.(94) by use of Eq.(105b).

For the case when the parallel flow damping has considerable influence in

modifying the quasilinear growth rate of the zonal flow (such as the DNS parameter in
[13]), we choose a representative value of   µ ∼ 1/2 .  For the parameters Eq.(105), one

has    H ∼ 2.5 .  With the help of the relation for   K0  in [20, 35] of    K0 ∼ s kθ , one has

   qr ∼ 0.1 ρs
– 1 (107)
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for the wavenumber of the zonal flow.  By use of these parameters, Eq.(100) provides an

estimate

   Uc ∼ 0.085Vdρ i
– 1 , (108)

at the boundary for the onset of turbulence, and the steady state condition Eq.(74) with

Eqs.(99) and (106) is written as

   
φ =

2.5ρs
Vd

U 2 – UcU =
2.5ρs
Vd

U 2 – 0.085Vdρs
– 1U (109)

in the collisionless limit.  Combining Eqs.(106b) and (109), the relation between  χ i  and

 U ,   χ i U , is derived as

    χ i

v thiρ i
2Ln

– 1 = 4.7
ρ i
Vd

U 2 –
0.085Vd

ρ i
U . (110)

It is emphasized again that the estimate of   µ ∼ 1/2  and Eq.(105) are the input parameters,

which are used to derive the theoretical prediction Eq.(110).

Equation (110) is compared with DNS in Fig.6.  Solid line shows the theory

(Eq.(110)) and dots denote the result of DNS.  A good agreement between them is
obtained.  We should note here that the fact that the cut-off frequency Γ  is introduced

based on an order-of-magnitude estimate, and the relation of the thermal transport

coefficient (e.g., Eq.(94)) has an ambiguity of numerical factor.  Thus, one should not

examine an exact agreement of the DNS data and the theoretical result Eq.(110), but

should focus on the qualitative feature, such that the appearance of the cut-off at small
drift wave amplitude or an asymptotic relation    χ i ∝ U  in the limit of strong turbulence.

That is, the theoretical model reproduced the essential features in the relation between the

drift wave and zonal flow amplitudes, which is observed in DNS.

4.4.2 Radial profile of nonlinear eigenmode

Before closing the analysis, the radial profile of the induced zonal flow is also

compared with the DNS.  For the parameters of interest, the model theory provides the
radial periodicity length as    λ ∼ 60 ρ i  from Eq.(107).  Figure 7 illustrates the radial

distribution of the vorticity associated with the zonal flow,    d vy /dr , where  ⋅ ⋅ ⋅

denotes the average over the magnetic surface and   r –  and   y –  coordinates are taken in

the radial and poloidal directions, respectively.  The simulation result confirms this

theoretical modelling.  Firstly, the radial distribution of the vorticity shows the flattened
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quasi-periodic form.  This is an extreme case of relatively low dispersion and high linear

drive in the analytic result.  Second, the periodic length is about

   λ ∼ 30 ρ i  (111)

and is in the range of theoretical prediction.  Third, the magnitude of the vorticity is
    d vy /dr ∼ 0.6Vdρ i

– 1 .  This value is also in the range of theoretical prediction,

   U0 ∼ 0.45 Vdρ i
– 1  at    ∆ω ∼ ω* .  The agreement of the magnitude of zonal flow between

theory and DNS is already explained in §4.4.1.

5 Summary and discussion

In summary, we have developed a theory of nonlinear evolution of the drift wave-

zonal flow system.  In the regime where coherent structure of zonal flow survives much

longer than the decorrelation time of drift waves, the coherent structure of the zonal flow

was analyzed.  The self-nonlinear effect of zonal flow realizes the stationary state.  The

coherent structure of zonal flow was studiedby the perturbative expansion with respect to

the zonal flow amplitude.  The nonlinear radial eigenmode was expressed in terms of

elliptic integral.  This determines the characteristic scale length of the zonal flow in

nonlinear saturated stage.  By treating the radial wavelength of the zonal flow as a

parameter, the renormalization of the higher-order nonlinear effects was performed.  The

driving force of the zonal flow was derived, in which contributions of zonal flow

vorticity at all orders were included.  By use of this renormalized dynamical equation for

the zonal flow, we studied the steady state system with both the drift wave fluctuations

and zonal flows.  The energy partition between them, the thermal conductivity, and the

condition for the onset of drift wave turbulence were analyzed.  The partition between the

drift wave energy and zonal flow energy was obtained as a function of the growth rate of

drift wave and the collisional damping of the zonal flow.  A theoretical formula of the

turbulent transport coefficient is derived, which covers the weakly-unstable regime (no

zonal flow), the moderately-unstable regime (where the collisional damping of the zonal

flow dictates the transport coefficient), and the strongly unstable case.  The obtained

formula extends the previously-derived formula to wider circumstances.  The condition

for the onset of turbulence and turbulent transport in the collisionless limit was also

derived.  This explains what has been empirically known as Dimits shift in DNS.

Formula of the turbulent transport coefficient was also derived, in which the screening

effect by zonal flows is self-consistently included.  The theoretical result was compared

with the DNS.  The energy partition between drift wave and zonal flow is tested for the
relation   χ i U .  For a wide range of plasma parameters that control the growth rate of

ITG mode instability, good agreement is also observed.  Thus, this analysis captures

some essential elements in the physics of the DW-ZF system.  This theory also gives a



2 8

prototypical example to understanding the mutual interaction between the turbulent energy

transport and generation of axial vector field owing to the global gradient of plasma

pressure.

Although this theory has shown some success in understanding of the nonlinear

dynamics of DW-ZF system, further research is necessary.  One issue is the parameter

range of validity for the existence of the coherent structure of the zonal flow.  The

coherent time is finite in reality, and must be self-consistently determined by use of the

statistical theory [3, 24- 27,41].  Systematic continuation of this model and the BGK

solution still needs further study.  The decorrelation of drift wave at the low level of drift

wave turbulence, Eq.(41), remains to be a very crude estimate in this article, and

improvement is necessary.  The other issue is the application of methodology to various

turbulence problems in actual experimental conditions.  In both issues, future evolution of

understanding is expected.
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Appendix: A formula of transport coefficient

In this appendix, explicit forms of the transport coefficient and the Dimits shift is

discussed for a practical use.
An analytic estimate for  Drr  has been given

   
Drr ∼

1
B2

k θ
2

γL
φ 2

, (A1)

in the vicinity of the marginal condition    ∆ωk ∼ γL  (See, e.g., §3.2.2 of [6]).  It is given,

in terms of the normalized fluctuation amplitude, as    Drr ∼ kθ
2k⊥

–4 ω*
2γL

– 1 φ2
.  The growth

rate of the zonal flow energy has been introduced by the definition    2Drrqr
2 = αφ2

.  That

is, the time rate α  is given as

   
α ∼

ω*
γL

2 k θ
2qr

2

k⊥
4 ω* . (A2)

The Dimits shift is given by the critical condition that satisfies Eq.(102), i.e.,

   
γL, c =

4 1 – µ 2

µ2H 2
qr

2

kθ
2 α . (A3)

Elimination α  from Eqs.(A2) and (A3), at   γL = γL, c , one has an equation of the critical

growth rate   γL, c  as

   
γL, c =

2 2 1 – µ

µ H

qr
2

k⊥
2 ω* . (A4)

For the least stable mode,  qr  is estimated by Eq.(57), 
   qr ∼

1 – µ
2 K0 , this relation

gives an estimate of   γL, c

   
γL, c =

1 – µ 2

2 µ H
K0

2

k⊥
2 ω* . (A5)

One estimate for   K0 = k r :

   
γL, c =

1 – µ 2

2 µ H
k r

2

k⊥
2 ω* (A6)
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For parameters   µ ∼ 1/2  ,   γL, c  is of the order of one-tenth of   ω* .

Explicit forms are also derived for domains discussed in §4.2.2.  One has the

following expressions.

(a) Small growth rate limit:

In the case of weak instability, i.e.,

   
γL < 1

1 – µ

k⊥
4

kθ
2qr

2
νdamp [region I] (A7)

the fluctuation level is given by

  φ =
γL

ω*
≡ φI (A8)

(b) Intermediate growth rate limit:

For the case of

   1
1 – µ

k⊥
4

kθ
2qr

2
νdamp < γL < γL, c , [region II] (A9)

the fluctuation level is given by

   
φ = 1

1 – µ
k⊥

2

k θqr

νdamp

ω*

γL
ω*

≡ φII . (A10)

(c) Large growth rate limit

The transition from the collisional-damping-dominated region [region II] to the

nonlinearity-dominated region is expected to occur at

   1

µ Hρs
2k θ

2 νdamp + γL, c < γL . [region III] (A11)

One has, from Eq.(87),

   

φ ∼
µHρs

2k⊥
4

4 1 – µ qr
2

– 1 + 1 +
8 1 – µ qr

2

µHρs
2k⊥

4

γL – γL,c

γL

γL

ω*
≡ φIII . (A12)
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The asymptotically-linear dependence on   γL  in this model is recovered, and a

suppression factor appears.  The suppression factor, which is induced by the co-existence

of the zonal flow, is approximately evaluated as    µH/2 1 – µ ρsk⊥
2 qr

– 1 ∼ k⊥ρs .

A similar argument is possible for the thermal conductivity.  In the regions I and

II, a fitting formula is given as

   χI + II =
γL ν
γL + ν

1
k r

2 . (A13)

where

   
ν = 1

1 – µ

k⊥
4

kθ
2qr

2
νdamp (A14)

denotes the impact of collisional damping of the zonal flow.  In the region III, Eq.(94)

and Eq.(A12) provide

   

χIII =
µHρs

2k⊥
4

4 1 – µ qr
2

– 1 + 1 +
8 1 – µ qr

2

µHρs
2k⊥

4

γL – γL,c

γL

γL

k r
2 . (A15)

A fitting in the regions I, II and III is

   χ i = χfit ≡ χI + II
2 + χIII

2 Θ γL – γL,c (A16)

where   Θ γL – γL,c  is a Heaviside function.
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Fig.1  Stationary state of the normalized solution  u x  for the case of    d = 8π .  Radial

length x  and vorticity u  are normalized values.
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Fig.2  The diagram for the zonal flow growth on    U, φ  plane.  Solid line indicates the

neutral condition for the weakly collisional case, and the dashed line is for the

collisionless case.
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Fig.3  Three cases for the solutions.  Solid line indicates the marginal condition for the

zonal flow growth.  Dotted lines denote those for the drift waves for various values of

linear growth rate.  Dots indicate steady-state solutions.  If the drive of drift wave is weak

[case I], the steady state solution is given by zero zonal flow.  The intermediate case [II]

and strong drive case [III] are also shown.

ν/α

0 γ  /ω
∗L

Region I
DW, 
no ZF

Region II
DW+ZF

Region III
DW+ZF

γ     /ω
∗L, c

Fig.4  Domains in control parameters.  (In this diagram, the time rate α  is treated as a

constant parameter.)
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Fig.5. The dependence of the amplitude of drift wave fluctuations φ  (solid line) zonal

flow  W  (chained line) vs.   γL  in the collisional case (a).  (Here,   ν/ω*  and   α/ω*  are kept

constant.)  Three regions appear.  Drift wave amplitude φ  (solid line) and zonal flow

vorticity  W  (thick broken line and thick dashed line) in the collisionless case   ν = 0  is

given in (b).  Thin dotted line shows φ  when zonal flows are not taken into account.

(   α/ω*  is kept constant.)  The region I disappear, and the drift waves are excited in the

region III.
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– 1  and thermal conductivity is in     vthiρ i
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– 1 .

Theory (solid line) and DNS data (dots) quoted from [13].
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Fig.7 Radial distribution of vorticity of zonal flow  U  in the DNS.  Snap shot in the

stationary state is shown.  Origin of radius  r0  is chosen at the center of simulation box.




