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Nonlinear structure of the zonal flow in toroidal plasma is investigated. It is found that
the turbulent drive of zonal flow starts to decrease at high velocity shear of zonal flow.

By this mechanism, the zonal flow evolves into a stable stationary structure in turbulent
plasmas. Flow velocity and radial scale length are obtained. Analytic model explains

simulational observations.
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Turbulence of the magnetized and high-temperature plasmas is subject of intense
studies. This is a typical example of structure formation in systems far from equilibrium.
It has been pointed out that micro-fluctuations induces semi-micro perturbation of flow
[1]. In particular, zonal flows, which are constant on a toroidal magnetic surface but
change rapidly in the radial direction [2,3], are known to be induced by micro turbulence
in tokamaks and play important role in determining turbulence and turbulent transport.

One of the key issues is the mechanism that regulates the structure of the induced
zonal flows. For instance, it remains unanswered whether induced small-scale zonal
flows evolve into a large-scale flows. The saturation mechanisms of zonal flow velocity
in the collisionless plasma are discussed: e.g., binary collisions play a role [3], and
possibility of secondary instabilities has been pursued [4-6]. These are important in the
wider field of physics. For instance, they are related to the problem whether the small-
scale dynamo magnetic field can evolve into large scale magnetic field or not [7]. In this
direction of research, ref.[8] studied theoretically the possibility that the zonal flows
evolve into a kink-soliton like structure, and the condensation of micro modes into global
modes has been studied by direct nonlinear simulations (DNS) [9]. HoWever, the
accessibility to the particular solution in [8] is not clear. It is known that the toroidal
geometry is crucial in determining the structure of turbulence and flows [10,11]. In many
DNS [12], it has been observed that, in collisionless limit, the turbulence is often
completely quenched by the induced zonal flow. In toroidal plasmas, the return flow
along the magnetic field line exists, and a stationary state of turbulence and zonal flow has
been found in DNS {11].

In this article, we analyze the nonlinear state of zonal flow in toroidal plasmas. It
is shown that, in turbulent toroidal plasmas, the perpendicular transport of perpendicular
momentum shows nonlinear saturation on the zonal flow shear, while the perpendicular
transport of parallel momentum does not. That is, the drive of zonal flow starts to
decrease at high velocity but the damping by turbulent viscosity of parallel flow does not.
By this, the zonal flow evolves into a nonlinear stationary state. The scale length and
saturation level of the zonal flow are analyzed. We first present a theoretical model and
then show the verification by comparing with results in DNS.

The growth of the zonal flow in the presence of the drift-wave turbulence has been
discussed by use of the time scale separation. The autocorrelation times of the drift wave
fluctuations are assumed to be much faster than the evolution time of the zonal flow. In

the slow time scale, the evolution of the zonal flow is governed by the equation [8]
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where V7 is the zonal flow velocity, N, is a slow modulation of drift-wave action N PR
which is induced by V7 , and Yaamp denotes the damping rate of zonal flow by other

processes. In the slow time scale, N, satisfies the eikonal equation
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A linear response has been obtained from Eq.(2) as
(.27 Ny _. A )
Ny = S5 (kQVZ) R(K, Q) *, - Here R(K, Q) = U’(Q - K do/dk, + ‘A(Dk) is the
response function, A®, is the nonlinear broadening and the zonal flow has a slow
dependence as exp(iKr - iQr] . The first order term gives the diffusion-like form

Yz=D,K?=-D,,3%3r? in Eq.(1) with
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i.€., the zonal flow growth [8]. The higher order responses with respect to Vz , N ;EZ)
and N{" can be calculated from the relation Ni") =kg (aszaf‘) R(K, Q) 81\7,5" - ”fak,. .

For a wide spectrum of fluctuations, one has R(K , Q) — /A, and obtains the leading
diffusion term of Eq.(3). In such a case, R(K , Q) has an approximate symmetry with

respect to k. The contribution from the second order term is small from the

consideration of symmetry, and the next order one comes from the third order term as
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Substituting Eq.(4) into Eq.(1) with Eq.(3), one obtains the equation for the vorticity
U =0dV4/or as
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Noticing the fact that the spectral function is peaked near &, = O , the sign in the definition

of [2; is chosen such that D is positive when D, is positive.
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Next, the most unstable wavenumber of zonal flow is considered. The zonal flow
growth rate Yz does not continue to grow at larger K when the dispersion effect of the

drift waves on the zonal flow is introduced. Let us consider the zonal flow excitation in
toroidal plasmas. It has been pointed out in ref, [13] that Y is written as

v2=D,K1-KIK}) @)

where K (2) represents characteristic scale where the dispersion suppresses the zonal flow
instability. An explicit form of K (2) is given in [13]. An additional damping mechanism
is explained as follows; The E x B flow in toroidal plasma is associated with the

secondary flow. As is shown in [10, 11], the viscous damping of the secondary flow
due to toroidicity works as the damping rate of the zonal flow, in addition to the
conventional collisional damping. This damping rate is rewritten, when collisional

damping is negligibly small, as [10]
Ydamp = uu( b+ 2‘?2]“(2 (8)

where H| is the turbulent shear viscosity for the flow along the field line and g is the
safety factor. (The coefficient 1 +2¢2 is replaced by 1 + 1.6¢%/V€ in the collisionless

limit. This dependence on the collisionality is put aside for a transparency of the
argument.) Taking into account Eqs.(7) and (8), Eq.(1) is written in an explicit form as

g ou-z),,,(aa2 U+K02§4 U) D, aa U3 — (1 +2¢ )gz U=0. (9)

The zonal flow is excited if the condition D,, > {1 +24?) is satisfied. Both the
zonal-flow driving coefficient D,, and the shear viscosity 1t are given by the drift wave
spectrum Ny . The ratio of L = |.1||(1 + 2q2)D,Tr' is a function of the spectral shape of
drift wave turbulence and geometrical factor such as ¢ . We use normalized variables
x=rlL, t=1ltz andu=UlU,, where L">=K3(1-p), 1,=D;' K;*(1-p)”" and
Us=D, D;' (1 - u) . Equation (9) is rewritten as

d 92 92 0%
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The short wave length components with K> L?> 1 are stabilized by the higher-order

derivative term. The flow is generated in the long wave-length region of K*L*< 1 | and

the zonal flow energy is saturated by nonlinearity and by higher-order dissipation.

_4_



We investigate the case that the flow is generated form the state with small noise

level where no net flow exists, f dx # =0 . Conservation of total momentum holds for

the periodic boundary condition and the flow evolves satisfying the condition

J dxu =0 Stationary solution of Eq.(10) in the domain 0 <x <d , for the periodic

boundary condition, is given by an elliptic integral as
-1
[(r-2wsut -] P au=s (1)

where X is an integral constants satisfying 0 £ x <1 . The integral constant K is given
e -1
by the periodicity | (1-26 44t~ )" dw=ar2Zn (. =VT=¥ , and

n=1,2,3,---) The temporal evolution of Eq. (10) is solved numerically. It is shown

that the growth is dominated by the component which has the largest linear growth rate.
That is, the integer 1 is given by the one which is closest to d/n = 427 . Figure 1

illustrates the stable stationary state. The peak value of u(X] ,is given as 4, = 0.95

Compared to a simple sinusoidal function (eigen function of linear operator), the result in
Fig.1 has much weaker curvature at the peak and is closer to a piecewise constant
function.

The normalized function u[X) is of the order of unity, so that the characteristic

values of vorticity and scale length [ are given as
12 - 112 12
Uy=D," D3 [1 —u) . (12a)

1=K, (1-p)" (12b)

The amplitude of zonal flow is given as Vo =1U, . From Eqs.(3) and (6), one has an
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Fig.1 Stationary state of the normalized solution #(x) for the case of d = 8% . Radial
length x and vorticity # are normalized values.
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order of magnitude estimate of D+/D,, . The ratio Dy/D,, is characterized by the
weighting function Dy/D,, = R(K, Q)zk %(azfak%) , which is evaluated as

‘R(K , Q)zk% a2/ak% | ~Awy 2k2¢* . This consideration gives an estimate

2 : .

D, ~ kif*Aw;? D,, . The absolute value of the ratio Dy/D,, depends on the anisotropy
of the spectral function Ny , but such a quantitative argument is not taken into account
here. Substituting this ratio Dy/D,, into Eq.(12a), one has an estimate

- » _
Uy=v,¥ l(1 - p]] , where v, = Ao,k ' . The flow velocity V, =U, ¢ is given as
112
Vo=v,(1-n) ", (13)

The fluctuation level of the drift-wave turbulence is determined in the fast time
scale, and is expressed by use of the inhomogeneity of the zonal flow as

-
I= IO(] + tgc(dV/dr)z) where I is the magnitude of the drift wave fluctuations (i.c.,

Fourier space integral of Ny ), I, is that in the absence of the zonal flow, and T, is the
autocorrelation time of the fluctuations of drift frequency range [1]. If U, approaches

T » suppression of turbulence becomes effective. From Eqs.(12b) and (13), one has

Iy

= 1+12 vag(] —u)2 '

(14)

. From these results we have the following finding. First, the nonlinear mechanism

for saturation of zonal flow is effective, and the flow velocity is sustained in the level of
U, . The saturation level of the zonal flow does not explicitly depend on the magnitude of

the instability drive of the drift-wave turbulence which is represented by { . The drift-
wave fluctuation level / increases with /o . The amplitude of zonal flow also becomes
larger by the increment of 7 , through the enhancement of the nonlincar broadening Aty

under stronger fluctuations. The radial shape of Vz(r) deviates from a sinusoidal

function and is given by an elliptic integral function. The turbulent viscosity of the
parallel flow has an important role for the evolution of the zonal flow. The dependencies
of the velocity and scale length of zonal flow and of the fluctuation level on “H(l + 2q2)
are given by Egs.(12b), (13), and (14). The flow is annihilated if u"(l + 2q2) >D,
holds. These are in contrast to the case of the collisional damping. In the case of
collisional damping, the fluctuation level I is independent (only weakly dependent) of 1,
when the zonal flow is generated [3].

It is worth comparing the solution in this article with those in Ref.[8]. A kink-

soliton like solution was found in [8] when the solution is scarched for in an infinite
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domain. Equation (11) includes a particular solution of a kink-like soliton in an infinite
domain with K =0, The solution in this article is stable against a perturbation. The one
in ref.[8] can be unstable against a long-wave length perturbations.

This result can be tested by comparing with the result of direct numerical
simulation. Analytic formula gives relation U 012 =16n2v, Ky and the wave length

- ~1/2 -
A=4n Ky l ( - ll) . With the estimate of strong turbulence U, = Amgky I= vg; and
- 112
Kg=sp7! ,wehavek~4ns—_1 (1 —u) p; and Uoss(l —u)vdi p7l. (vg; :the
diamagnetic drift velocity and s : magnetic shear). This result is tested by the result of a
three-dimensional nonlinear simulation of the ion-temperature-gradient (ITG) mode
turbulence based on two fluid models [11]. In this simulation, the dynamics of the

electrostatic potential, ion temperature and ion parallel velocity are followed in toroidal

geometry with adiabatic response for electrons. Radial width of simulation domain is
120p; and a realistic ITG dynamics was obtained in this case by switching off the

unrealistically high parallel fluid heat conduction.. Parameters are €, = ZLHIR =09 ,
L/Ly=3.1,9=14 (g=0.7 for zonal flow component in order to reduce the damping
of zonal flow), and s =0.8 . (L, and L7; are gradient scale lengths of density and
temperature, respectively.) Details are explained in [11]. Figure 2 illustrates the radial
distribution of the vorticity associated with the zonal flow, d<vy>/dr , where ( g >
denotes the average over the magnetic surface and 7 — and ¥ — coordinates are taken in
the radial and poloidal directions, respectively. The simulation result confirms this
theoretical modelling. Firstly, the radial distribution of the vorticity shows the flattened

quasi-periodic form. This is an extreme of relatively low dispersion and high linear drive
of the analytic result. Second, the periodic length is about ~ 20 p; and is in the rage of

the theoretical prediction. Third, the magnitude of the vorticity is d(vy)/dr ~0.6v4p7 7 .

This value is also in the rage of theoretical prediction, Uy ~ 0.8 (1 - u) vgP7 ! . Note that
K is kept smaller than unity in the simulation by lowering g -value for the zonal flow

component.
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Fig.2 Radial distribution of vorticity of zonal flow U in the DNS. Snap shot in the
stationary state shown. Onigin of radius 7y is chosen at the center of simulation box.
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In summary, we studied the nonlinear structure of the zonal flow in toroidal
plasma which is in the turbulent state. It is found that the drive of zonal flow starts to
decrease at high level of velocity shear of zonal flow, but the viscosity damping of
paraliel flow does not. By this nonlinear mechanism, the zonal flows evolve into a stable
stationary structure. The level of flow velocity and scale length are obtained. This result
of the coherent structure of the zonal flow in turbulent plasma is confirmed by DNS.
Thus we have clarified the nonlinear structure of zonal flow driven by turbulence in the
range of drift waves. ’

The structure of the zonal flow which is obtained here critically depends on the
two facts: (i) saturation (reduction) of zonal flow drive at the high level of zonal flow
velocity (ii) the turbulence viscosity of parallel flow does not show this saturation at high
zonal flow velocity. This theoretical modelling needs verification by DNS. For this
purpose, DNS has been performed and the Reynolds stress has been measured. We have
made a detailed measurement of the Reynolds stress in DNS, and obtained direct
confirmations of (i) and (ii) including the dependencies of Eq.(9). Details will be
reported in forthcoming article [14].
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