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Abstract

A mechanism for the onset of the mejor disruption is
proposed which considers the effect of magnetic stochasticity on
the growth of the w=2 tearing mode. The toroidicity can cause

stochasticity near the separatrix of the m=2 magnetic island

which enhances the current viscosity, resulting in explosive
growth. The threshold condition and the time scale of rapid
growth are studied. The role of the toroidal coupling to the n=1

component 1s also discussed.
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Hajor disruptions in tokamaks, which suddenly terminate the
plasma discharge, have been known from the beginning of tokamak
researchl). Experimental investigation has clarified that the
growth of low {(m,n) helical deformations (m and n are poloidal
and toroidal mode numbers, respectively), brought about by vari-
ous operating conditions, can cause a major disruptionl‘7), The
intrinsic feature of the major disruption is the occurrence of a
sudden central temperature ccllapse (thermal quench), followed by
a rapid change of the internal inductance (redistributior of the
current), These abrupt changes cause 2 strong interaction of the
plasma with the wall/limiter, resulting ir an enhanced impurity
radiation which leads to the final collapse of the plasma energy
and current (current quench), The essential features of the
phenomena are the thermal guench and the redistribution of the
internal flux. The m=2/n=1 tearing noded’ has been a carndidate
in theoretical modelling of a major disruption, and the mode has
been known in experiments to be ar important componentz_S). The

) of the single m=2 tearing mode, however, has

nonlinear theory
shown that this mode only grows with Lhe slow resistive diffusion
tinme, T.= porzz/ﬂ (where rg is the minor radius of the g=2 ratio-
nal surface, q is the safety factor rBt/RBp, R is the major
radius, subscripts p and t denote poloidal and toroidal direc-
tions, respectively, and 7 is the resistivity). Other nonline-
arities such as the effect on the current shapelo_lZ) and the
effect of the interaction with modes of different helicity13)

have been proposed, Particular emphasis was put on the study of

the interaction between the m/n=2/1 and 3/2 modes using computa-




tional codes. The computationsl3_17) have shown that the nonli-
near destabilization takes place when the magnetic islands of
n/n=2/1 and 3/2 modes overlap, stimulating the development of the
theory of nonlinear growth with modified resistivity18'19x

More detailed computations, however, have shown that the inferac-
tion between the 2/1 and 3/2 wmodes does not cause the destruction
of the central part of the plasma, and thus does not fully

explain a major disruptionze)

The additional important role of
the m=1 mode, in experiments, has recently been recognized4_7x
In this note we outline a model of the major disruption,
including the development of stochasticity from the nonlinear
interaction of the ©/n=2/1 mede with the toroidicity. This
extends our previous investigation on the role of magnetic sto-

chasticity on sawtooth activityZI).

Explosive growth of the mode
is found due to the enhanced current diffusivity, when the mode
amplitude exceeds a certain criterion that is a function of the
magnetic shear. We also discuss the effect of the toroidal

22,23)  The mechanisms descri-

coupling to the m=1 internal mode
bed in this article are qualitative, used for obtaining physical

insight.

The magnetic field structure is described by the Hamiltonian

formulation24).

Introducing the Hamiltoniam H(J, 8, ¢) (J=r2/2, 0
and ¢ are the poloidal and toroidal angles. respectively), the
field line follows al/a¢=-all/av, ao/a¢=all/3]. The unperturbed

Bamiltonian is given as H0=I£(J)d5, where £ 1s the rotational

transform, 1/a. In the presence of the u/n=2/1 perturbation, ths



n=2 island is approximately described by the pendulum Hamiltonian

around gq=2 rational surface as
Ko[AJ. 81 = 6(a1)%/2 + F cos(®) (1)

where Af=J/2—J0/2. «(Jgl=1/2, B=26-¢, G=4al/allat J=Jgl. F=JyB,,
ard Bn is the normalized amplitude BH=R§}/rB¢O of m/n=2/1 node
perturbation. The island size in the J space is given by A?H=
2yF/ |G|, and the rotational number around the O-point of the
island is given as m0=/§TET. B, has a J dependence since E}
depends on r. In the spirit of obtaining analytic insight into
the phenomena, we here take the value at J=Jg and treat F and G
as constant.

The nonlinear interaction of the main island with the toroi-
dicity causes secondary islands to appear, which overlap near the
separatrix leading to stochastization of the flux surface824).
The thickness of the stochastic layers near the 0O-point, 8], and
the x-point, 8J,, can be evaluated in terms of F and G21’24), and
6], = Jﬂfuﬁj. Figure 1 illustrates the schematic drawing of the
stochastic layer near the island separatrix. The growth of the
stochastic layer is expomential in the perturbation strength. We
find that 8], becomes thicker than the characteristic current
layer width associated with tearing mode when m0>1/15, and that
6J can be of the order of the distance between major island
chains when wy> 1/6. The condition (i)ATy~J(/2 means that the

m=2 magnetic island reaches the axis, and is sufficient to recon-

nect the magnetic flux inside of the ¢=2 surface. The condition




(iidwy~l/6 corresponds to the stochastic layer reaching the
central part of the plasma, i.e., the rapid heat loss resulting
in the energy quench. The condition (iii) eg>1/15 allows the
rapid growth of the mode as seen in the following.

Figure 2 illustrates these conditions in the space of
nagnetic shear, s= r(dg/dr)/7 at the g=2 rational surface, and
the normalized magnetic perturbation amplitude By [There are
three cases to be considered: (I) a monotonic g-profile with g1
on axis; (II) 2 monotonic g-profile with g<1 on axis; and (III) a
hollow g-profile with g=1 at some internal radius. Figure 2
corresponds fo case(I), but is qualitatively the same for other
cases, ] When the shear is strong, s>0.3, there appears a region,
where the stochasticity plays a dominani role (condition (iii)}),
i.e., the region between lines (1) and (3) in Fig.2. It is also
noted that the stronger the shear parameter s, the lower the
threshold amplitude.

Explcsive growth is possible when stochasticity appears near
the separatrix. Then current diffusivity appears in Ohm's law,
B+vxB=7j-2V2j (j being the current density), and if the diffusive

term is greater than the resistive term, the growth becomesZS)

/B EEE - E_C3/ZS3/2
1 ot 3 }lor24

A

LA (2

Here C is a numerical comstant, C=0.86, A" 1s the parameter for

the tearing node stabilityg’g), and t is the time after entering

the Rutherford regime. The local shear parameter s also changes



due to the current viscosity, which was evaluated 8624)

as A
— = -9s .
ot p0r24

(3)

Combining Egs. (2) and {3), we have the trajectory in the Cs,Bn)

plane as
Bn3/2 + [203/2A’r2/27]83/2 = const. (4)

For the parameter of imnterest, i.e., s~0(l) and below line (1),
change of s along the trajectory i1s negligible for [2C3/2A’r2/27]
>4x1073 (or A'rg>0.5). If A'ry<0.2, the trajectory is bent and
would not hit lime (2). In the following, we consider the large
A’rz case, and consider s to be constant. The magnetic
stochasticity near the x-point enhances the current diffusivity,

which we have estimated 3821)

A v D
R D
RoTg QL

where V4 is the Alfven velocity, DM is the diffusicn coefficient
of the magnetic field linBSZS), and DQL is 1ts quasilinear value.
The coefficient FO is given by FO=R3/2(C/mpr2)2Ve/VA (mp is the

plasma frequency and Ve is the electron thermal velocity) and is

of the order of 10 4 for parameters like the JET tokamak. This

coefficient is larger for smaller devices. Conbining equations




{2) and (4), we find an explosive growth of the mode when

stochastic diffusion switches on, which, in the limit of Dﬂ/DQL

=], gives
B
B, - 2 (6
{l"j‘BnGTt}
where 1 = (Cs)3/2POA’rer_1/3, and the origin of time is taken at

the time that the growth due to the current diffusivity equals
that by the the resistivity, which occcurs at the amplitude of
Bn=Bn0' The characteristic time for the explosive growth is At =
l/ngaf, which is fast and independert of the resistivity. The
current diffusivity prevails over the resistivity if SZA[WZZ > 7
where wo is the width of the m-2 island?3). Substituting the

expression for A, we have
BIIO = [DQL/Du]fA/ZFOTr . (7)

If we consider the values Ty ~ 10 4, T, /Ty v 10778, and Dy = Dy,
for By > 10_2, we find that Bn>BDU is easily satisfied once the
stochasticity swifches om; that is, once the condition that wy >
1/15 is satisfied.

For case (II), q(0)<1, the condition that the mode growth is
stochasticly enhanced is quite similar to that given by curve (3)
in Fig.2, and thus the resulis in Egs.(8) and (7) still apply.

In this regime, the additional condition that stochasticity join

the /n=2/% and u/n=1/! modes needs ic¢ be satisfied, which cas be



expressed in action variables as?%’ (A31+A?2)/6J12 > 2/3, where
A?l and A?Z are obtained from Hamiltonians of the form (1),
applied to m/n=1/1 and m/n=2/1 islands, respectively, and 8] 9 is
the distance in action space between the g=! and g=2 surfaces.
Since previous calculation321) indicate that the m/n= 1/1 island
will stochasticize field lines to the axis, subject %o a
condition on the ion viscosity, we would expect this situation
also leads to a major disruption if the m/n=2/1 island grows
sufficiently to satisfy the w>1/15 explosive growth condition.

For case (I11), a hollow g-profile with g=1 at some radius,
a further enhancement of the growth rate is due to the toroidal
coupling of the m/n=2/1 mode to the m/n-1/1 mode22-23) 1 fact,
it is known that am m/n=1/! pure MHD instability is possible when
the gq(r) profile is hollow and the difference Aq=q(0)-1 is

27,28)‘

greater-than a critical value ch Using the parameter

ch, the A’ -value in the toroidal gecometry is given 3323)

(8g,)8/2
Nry = & qrg + D (8)
2 cyl'2 (Aq)a/z_(ﬁqc)sfz

where A’cyl is the A’ parameter calculated in cylindrical
geometry, and D is a coupling coefficient of the order of 82.
This result shows that, by coupling with the m=1 component, the
m=2 itearing mode can have a large A" value, independent of the
reduction of A'cyl due to finite mode amplitude. The condition

that Ag reach ch is one mechanism for initiating the m/n=2/1

mode growth until it satisfies the explosive condition and




consequent disruption.

The ion viscosity may stabilize the mode as found in an
investigation of m/n=1/1 island growchI). To see it, we esti-
mate the typical tire scale of viscosity damping by I/T%is =
pi/wzz, where By is the stochasticity-enhanced ion viscesity.
Compared to the typical growth time BH/En of Eq.(2), the damping

time is longer than the growth time if A’r2>40 for the

vis
typical parameters; viscous damping can be neglected in case
(III) in which A'ry is much enhanced. Otherwise, the ion visco-
sity may be important in the dynamics {(at least this reduces the
growth rate8)), and we leave this for future analysis. FWe also
point out that the interaction with then/n=38/2 island also
occurs, whether this mode is unstable or not, due to the nonline-
ar coupling. This particular 1nteraction is not necessary to
obtain the explosive growth, but it is part of the general inter-
action of the m/n=2/1 island that leads to the stochasticity.

¥e compare these mechanisms to observations. We see that
the stochastic heat transport is consistent with the understand-
ing that the thermal queanch, following the precursor, is the
first among the drastic phenomena connected with a disruption.
If the mode growth continues until the full reconnection reaches
the axis, the internal inductance and current distribution can
flatten rather rapidly inside of the plasma column, due to an

electron-viscosity-aided reconnectionzl).

The dependence of the
critical amplitude on the magnetic shear also agrees well with
the experimental observations that high shear at the g=2 surface

more easily gives rise to a major disruption.



Toroidal coupling to the m=1 component is consistent with
the experimental observation, that, in the phase leading to the
thermal quench, the m=1 deformation has a particular phase
relation to the m=2 mode4’5). At the torcidal angle where the
n=2 crescent shape island appears on the top and bottor of the
torus, the central p=! motion is outward, which is consistent

29)

with the toroidal tearing mode This relation was found on

5) and was also confirmed on

JIPP-TIIU under various conditions
JETSO). The unique phase relation between n/n=2/1, m/n=1/1 shows
that the coupling is caused through toroidicity,

It is also noted that the sawtooth often disappears before
the major disruption takes place. For instance, Fig.3 of Ref,[5]
indicates that, prior to the major disruption, the inversion
radius of the sawtooth comnverges to the axis and the sawtooth
disappears, This observation is consistent with a situation in
which the trigger occurs when Ag reaches Aq.,. Imn the case of a
low-q disruption, the sawtooth does not necessarily disappear.
This implies another mechanism for the initial trigger, such as

increasing shear, which allows ssufficient stochasticity at the x-

point.
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Figure Caption

Fig.1 Magnetic island and stochasticity region (hatched
region) are illustrated. AJu and 5JX indicate the width of
the main magnetic island and the thickness of the stochastiic

layer near the X-point, respectively.

Fig. 2 Domains of stochasticity and fast growth on the s-B
plane. The upper solid line (1) indicates the condition
that =2 island expands to near axis. The lower scolid line
(2) denotes the comdition that the stochasiic region reaches
near the axis. The dotted line (3) shows the boundary,
above which stochasticity enhances the mode growth. The

stochasticity can be important for the high shear region,

s20, 3.
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