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Abstract

Steady state tokamak solution is studied by taking into
account the current diffusivity. The seed current for genmerating
the Bootstrap current is supplied through the radial diffusion
of the Bootstrap current. Steady state tokamak, without external

current drive power, is in principle possible.



The diffusion-driven toroidal current[1-§], which has been
known by the name of "Bootstrap current”, hgs recently attracted
attentions. The neoclassical theory of the plasma transport in
toroidal plasmas has shown that the radial diffusion of plasma
can drive the toroidal current. This mechanism would reduce the
necessary circulating power for the future tokamak reactors.
Developments of the theory were made in many aspects, and com-
parison with experiments were also enthusiastically investigated
{4-9]. The mechanism to drive the Bootstrap current, however
cannot completely annihilate the current drive power. The Boot-
strap current requires the "seed current” near the axis[1]. The
necessity of the seed current is one of the candidates to limit
the lower boundary of the circulating power to sustain the steady
state tokamaks,

Siace the Bootstrap current is driven by plasma diffusion,
the effects of the many transport processes on the toroidal
current nust be carefnlly investigated. The anomalous transport
mechaniss to drive the current has been investigated[10,11]. Tt
was found that the current drive by the anomalous transport,
which would be responsible to the presently-observed anomalous
loss of the plasma energy, remains to be a small correction. In
this article we study the effect of the current diffusion across
the magnetic surface. We find that the seed current near axis
can be supplied by the radial diffusion of the Bootstrap current,
which is driven at the location where the density has a large
gradient. By supplying the seed current through current dif-

fusion, the Bootstrap-current tokamak solution can exist station-



arily without the external current drive scheme. This may give a

pessibility of the steady-state tokamak ignitionm.

§e take a simple model of high aspect-ratioc tokamak with

circular cross section, of which the temperature is constant in

space. (This does not limit the generality of the argument.) In

the banana regime, the diﬁfusion-driven current is given to the

leading order of /e as[12],
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where e=r/R, r is the minor radius, R is the major radius, Jt is

the toroidal current, B_ is the poloidal magnetic field, p, is
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the electron pressure and n is
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current to generate the Bootstrap
This fact has been thought to set
The diffusion of

current drive.

can supply the seed current, which

is amplified by the Bootstrap current.

¥e study the steady state

with zero toroldal electric field.

In the presence of the current diffusivity[138,14] the term which
is written as AVth is added to Oha's law. We have

701y - Jpg) AVEI - O, (2)
for thé stationary state. Eguation (2) with Ampere’s law. er =
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s is the normalized radius s=r/a (a is the minor radius of the
tokamak), q(a) is the safety factor at the surface, 7 is the
classical resistivity, meu/nez, v is the electron collision
frequency and e is the electron gyroradius. Since the density
profile is flat at the axis, C reduces to a constant near axis.
Equation (3) allows, in the case of A=0, only the trivial
solution J; = 0, if the condition that Ji and n(s) are regular at
the axis (s=0) is required. (This result corresponds to the
necessity of the seed current.) If A does not vanish, Eg.(3)

allows the nontrivial solution with the requirement of the

boundary condition

d
——Jt = (at s=0). (8)
ds



In the vicinity of the axis, s=0, the first and second terms in
Eq.(6) dominates. The solution of Eq.(3) is approximately given

as

Jt(s) = JUIO(aJﬂ/As), (7)

where 10 is the 0th order Bessel function of the second kind and
Jo is the current density at the axis. The fact of dJ/ds>0
indicates that the current is diffusing to the axis.

The energy balance is studied. By nultiplying J(s)s to
Eq. (8) and integrating it from zero to I, we have the energy

balance relation per unit toroidal length as
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The left hand side is the power supplied across the plasma
surface. The first term in the right hand side is the dissipated
power by the current diffusion, the second is the Ohmic
dissipation, and the third is the work done by the diffusion-.
driven electro-notive force. The parameter C is proportional to
the plasma beta value. The first and second terms inm the right
hand side are positive definite, and the third one is negative.
If the beta value is large enough, the right hand side of

Eq.(8) goes to zero and the supplied power can vanish.

The solution of Eg.(8) is characterized by two parameters,



€C{(s) and A/7m. Numerical sclution is obtained for the case of
C = Cull-s%) (9)

and CO is constant. Parameter A/% is also taken to be constant
in space for the simplicity. The parameter C0 can be rewritten

as
Co = 74.88/a/Re,, (10)

where Bep is the poloidal electron beta value
IQ(a)R/a}Zuope(O)/BZ. Figure | illustrates the externally
supplied power (left hand side of Eq.(8)) as a function of the
electron beta value. As the plasma pressure increases, the
externally supplied power starts to decrease; it finally vanishes
at the critical beta value (/§7§Bep = 1.48 for this case). Above
this critical beta value, the supplied power is negative, which
implies that the negative toroidal electric field is generatad
for the constant current conrdition (recharging). TFigure 2 shows
the radial profile of the toroidal current. Solid lige indicates
the self-sustaining state, i.e., the stationary state is
sustained without external current drive (slightly excess current
is generated, as a whole, and is ejected from the plasma. ) The
diffusion-driven current, which is strongly generated near the
half radius, diffuses inward, supplying the seed current at the

axis. The toroidal current also diffuses outward.



In summary, we study the influence of the radial diffusion
of the plasma current on the steady state solution of the
tokamak. The toroidal current at the axis is generated by the
current diffusion, and works as the seed current for the Boot-
strap current., It is shown that the Bootstrap current can
sustain itself by this mechanism. The steady state tokamak
solution exists without being supplied the seed current
externally. This implies the possibility of the steady state
ignition in tokamaks,

This result indicates that the small amount of the current
diffusivity is effective in reducing the necessary circulating
power to sustain the toroidal current in high beta tokamaks. The
practical application of this finding to the real experimental
program 1s beyond the scope of this study. For instance, the
stability analysis is inevitable since the plasma 1s in the very
high beta regime.Similar research has recently been reported, in
which large current diffusivity is generated by the global

tearing mode15).

¥e would like to emphasize that the further
study is necessary to fully understand the diffusion-driven

current in the high beta tokamaks,
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Figure Captions

Fig. 1l Externally injected power as a function of a/RBep
for the condition of fixed total current Ip. Unit of the
input power is taken as nIPZ/ZRaz. Parameter azn/A is

chosen to be 100,

Fig. 2 Eadial profile of the toroidal current. Parazeter
fa/Rsep is chosen to be 1.58 (solid line), 0,497 (dashed
line) and 0.170 (dashed-dotted line). Other parameter is

the same as in Fig.l
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