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Abstract

Theory of the anomalous transport coefficient in toroidal helical systems ( such
as stellarators, torsatron and Heliotron devices) is developed. The theoretical
formalism of self-sustained turbulence is applied to the interchange mode turbulence
and ballooning mode turbulence. The nonlinear destabilization of microscopic modes
by the current diffusivity is the key for the anomalous transport. A general form of the
anomalous transport coefficient in toroidal plasmas is derived. The intrinsic importance
of the pressure gradient, collisionless skin depth and Alfven transit time is confirmed.
The geometrical factors which characterize the magnetic configurations are also
obtained. The theory is extended to study the influence of parallel compressibility. The
ion viscosities of the perpendicular and parallel momenta, electron viscosity and energy
diffusion coefficient are obtained. The comparison with experimental results is also

given.
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1. Introduction

The transport across the magnetic field in toroidal plasmas has fong been known
as the anomalous transport. Though the phenomenological knowledge has been
enriched these days, the fundamental understanding is far from satisfactory. (For a
review of present status, see, e.g., Houlberg et al. 1990, Wootton et al. 1990, Ross et
al. 1991, Itoh and Itoh 1992, Wagner et al. 1993) One of the working hypothesis to
explain the anomalous transport is that it is caused by fiuctuations in the confined
plasma, and that the fluctuations are sustained by microscopic instabilities. (See e.g.,
Kadomtsev 1965, Liewer 1985). The instabilities are brought about by the
combination of the plasma inhomogeneities and the magnetic field structure. It is
therefore meaningful to compare the anomalous transport phenomena in devices of
different magnetic configurations. By this compariscn, one may be able to extract
common natures and to distinguish them from specific features that are characteristic to
the particular kind of magnetic configuration. The progress in the transport study in
helical systems and stellarators has recently encouraged the comparison studies ([toh
and [tch1989, Wagner et al. 1993).

The conventional theoretical picture has provided the estimate for the diffusion
coefficientas D =“{L/ki, where ¥ and k, are the linear growth rate and perpendicular
wave number of the most unstable mode, respectively (Kadomtsev 1965). Although
detailed analysis has given accurate forms of vy, this formula was not abie to explain
the experimental observations on the anomalous transport coefficient (See Connor et al.
1993 for the comparison study). We have recently proposed a new theoretical method
to analyze the anomalous transport phenomena in magnetic confinement devices (Itoh et
al. 1992, 1993a, b, ¢, 1994a). In this new theoretical approach, the instabilities are
caused by the anomalous transport itself. Hence the fluctuations and transport
coefficients are sustaining each other, under the condition of the given gradients of
equilibrium plasma parameters. The self-sustained state is realized even below the
critical pressure gradient against the ideal magnetohydrodynamic (MHD) instabilities.

In this sense, the turbulent state is classified as a kind of subcritical turbulence. In this




nonlinear destabilization mechanism, the role of the current diffusivity is essential. The
characteristic scale length was found to be the collisionless skin depth, 6 = c/oy, (¢ is
the speed of light, and @y, is the electron plasma oscillation frequency) confirming the
idea in the Ohkawa model of anomalous transport (Ohkawa 1978). This method has
been applied to helical systems and to tokamaks. Detailed derivation of the method and
resultant transport coefficient were discussed for tokamaks in detail (Itoh et al 1994a).
The results have shown considerable success in explaining the tokamak [-mode
plasmas (Fukuyama et al. 1994a, b).

The purpose of this article is to present the transport coefficient in the toroidal
helical plasmas. In this class of magnetic configurations, we choose two typical ones.
One is the torsatron/Heliotron configurations (Gouldon et al. 1968, Mohn 1970, Uo
1971). This system is characterized by the magnetic hill and strong magnetic shear.
(We may call the torsatron/Heliotron system by the word ‘helical system' in this article
for abbreviation.) The other one is the conventional (or modular) (=2 stellarator (1 is
the multipolarity of the helical field). This configuration is characternized by the weak
shear and magnetic well. The analysis on these toroidal helical plasma complements the
study on the toroidal plasmas in general, because the tokamaks are characterized by the
magnetic well and strong shear. The torsatron/Heliotron configuration is accompanied
by the magnetic hill, the interchange mode turbulence, rather than the ballooning mode
turbulence, can occur. By the difference in this character of the modes, the resultant
anomalous transport coefficient shows different dependence on the geometrical factors,
compared to that for tokamaks. The other purpose of this article is the study of the
influence of the parallel compressibility, which was neglected in previous work, on the
seif-sustained turbulence. It is shown that the effect of this new term is small and does
not change the previous conclusion qualitatively. The ion viscosities of the
perpendicular and parallel momenta, electron viscosity and energy diffusion coefficients
are obtained. These four quantities are found to be of the same order of magnitude.

The relative ratio between them is discussed.



The constitution of this article is as follows. In section 2, the basic equation for
the case of toroidal helical plasma with magnetic hill is discussed. The renormalization
of the turbulence and the mean field approximation are discussed. In section 3, the
eigenmode equation for the dressed test mode is obtained. The stability analysis is
performed, and the marginal stability condition is obtained. In section 4, the transport
coefficient is derived. In section 5, the transport coefficient for the stellarator (the
system with magnetic well and weak shear) is discussed. Summary and discussion are

given in section 6.

2. Model Equation for Toroidal Helical Plasmas
2.1 Model Equations

We study the high-aspect-ratio, toroidal helical plasma with magnetic hill and
strong magnetic shear. The minor and major radii of the torus are given by a and R,
respectively, We use the toroidal coordinate (1, 9,{). The reduce set of equations for
the static potential ¢, pressure p, current J and parallel velocity v are employed (See

Yag 1989 and Hazeltine 1983). The equation of motion:

Q_Va%c_p +fo, Vo=V, 7+ (Q’xa)'Vp+ w Vig (1)
the Ohm's law:

=-Vio-HF+l.0)-n1 v @
the energy balance equation:

P s o= BV v+ ¥ 3 ®

and the equation for the parallel motion:

LoV =-Vyp+ Yy @

constitute the set of basic equations. In these equations, the bracket [[.g} denotes the

Poisson bracket,




I 2] = (VixVg-b

(g is the unit vector along the field line), (' is the average curvature of the magnetic
field, ¥ is the vector potential, 1£ denotes the finite electron inertia, 1/§ = (Bfa)2 , T is
the classical resistivity, and B is the ratio of the plasma pressure to the magnetic
pressure. The transport coefficients |, A, X Wy ¢ are the contnibutions from the
collisional diffusion and are viscosity for the perpendicular momentum, current
diffusivity, thermal conductivity and viscosity for the paraliel momentum, respectively.
This set of equations is a generalized form of the one used in previous articles (Itoh et al
1992a, 1993a, b, 1994a, Yagi et al 1993) because the effect of the parallel
compressibility is taken into account. The finite gyro-radius effect and the electron
pressure terms in Ohm's law are neglected. In writing Eqs.(1)-(4), the normalization

for resistive MHD modes are employed:

v /atot, ra—r1,  0/fgav,By —» ¢, WigaBy - ¥
JapgeBg = I, v iEvy) = v, pl2ny/eBY - p, nfta/ige?) =M
Liftapad) 2R BT )R, XEapd) =X Mty ma) =4

where ¢ is the inverse aspect ratio, &/R, v4 is the Alfven velocity, B is the main

magnetic field, and Tap = Riva.

2.2 Renormalization

The nonlinear equations (1)-(4) are transformed to the equation for the test
mode (denoted by k) in the presence of background fluctuations (denoted by ki) by
employing the renormalization. In the process of the renormalization, the back-
interaction of the driven mode (denoted by ko) to the original test mode is kept. The
ExB nonlinearlity is taken into account. The detailed procedure was given in the

previous article (Itoh et al 1993c). The driven mode is given as
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where Y,y =Y +Tp ¥ j2=YR)+ T p, Yo2=Y@ +Tp2 Yy2=7@ +T,p N2) is
the eigenvalue of the ky mode, 9{U,, J,, p5,vob/dt = 1(2) {Uz I pova) . Tz, Tj2. Tp2
and I'yz denote the decorrelation rate of Us, Jo, p2 and v2 by the back-ground
turbulence, respectively. (Suffix 1 and 2 denotes the abbreviation for ki and k3,
respectively.) Other notation is: U is the vorticity, U = -k_zL(p, o= Yplv2t+ kaz,
iAap, = (Q’xa-sz, G, =kgy{dpy/dr), py is the equilibrium pressure profile, and the

nonlinear interaction terms are defined as

Ny=[p. Ud. Nj= [0, 3d, Ny=[o1.pd, No=[o,, v . (10)



2.3 Diffusion Approximation and Mean Field Approximation

The nonlinear contribution to the original test wave is obtained by calculating
the back-interaction of the driven mode with background turbulence. Such contribution
has the form as Y[¢.1, Uz} and is proportional to X[¢.1, [$1, Ux]]l. Taking the
assumption that the wavelength of the turbulence is much shorter than the scale length
of the envelope of fluctuations, and that the convective momentum associated with
turbulence is small, as in the previous article (Itoh et al 1994a), the nonlinear terms can
be expressed in the form of the diffusion matrix. The simplification is taken such that

the turbulence is isotropic,
(190 /ar?) = {99 ,/ra0) = {k 1,112 (12)

Bracket <> means the average. Only the diagonal elements are kept in the following
argument. By these approximations and assumptions, Eqgs.(1)-(4) deduce to the set of
linearlized equations for the dressed test wave as follows.

The equation of motion:

av3
52 1 fpo Viel+ muVie=V, s+ @D (13)

the Ohm's law:

%‘%=—Vntp—é(g%ﬁ%,ﬂ)—nﬂlﬁil (14)
the energy balance equation:

op 2

i [0 Pl - xxV1P=—[¢. pd —BVyv (15)
and the equation for the parallel motion:

%‘F[(P&V]*!-lmcvi" =-V,p-[0. vl (16)

where the suffix 0 denotes the equilibrium distribution, and the suffix k denoting the
test wave is suppressed for the simplicity. The diffusion coefficient for the test mode 15

derived in the appendix.



The mean field approximation is employed to perform the stability anatysis and
obtain the transport coefficient and turbulence level. We approximate the constants

k. Mo Xx- My 1 by a set of diffusion coefficients i, A, %, 1y ». We have

k104 1
=3 1
My —Z K| (17
A = (8/a)2ue (18)
2
n :Zlk_u(Pll 1 Ll_]'.. l_m AIGI (19)
¢ KY'Y i Tu I_‘vplk.i.l
" 2
x:zl _Lgpll Kl_Y;le]_ 1+ ZE.rk%l (20)
1 Lypr KiYaY i
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and
ki; € AGpy
K| =Yy + — o — v 22
1= Yu1 E_:le Tkl (22)

In these expressions summation is taken over background fluctuations, k;. The
coefficient |4, is the electron viscosity. This result is the generalization for the three
f1eld calculation in the previous article (Itoh et al 1994a) and distinguishes the ion

viscosity of the perpendicular momentum (Ut ; ) from that of the parallel momentum

(-

3. Stability Analysis
3.1 Eigenmode Equation
The renormalized equations are given in a form of the linear form of the dressed

test wave with diffusion coefficients (U , A, %, L) . Eliminating J and v from the set of

equations, we have
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(The tilde denotes the dressed test wave in this set of equation.) The term which is
proportional to B (the last term in the bracket of the left hand side of Eq.(24)) denotes
the effect of the parallel compressibility. If this term is neglected, the result in the
previous article is recovered.

The effect of the parallel compressibility is treated perturbatively. Itis showna
postériori that the correction is of the higher order in the inverse aspect ratio, and this
expansion is validated. Expanding the pressure perturbation with respect to B, Eq.(24)

gives p in terms of ¢ as

n_ Gy 1 1\~
P=—yl1-fk k ¢ (25)
T+ XKL{ Ykl s Xk%}

Substituting this expression into Eq.(23), we have

k2
k = ky §+ (y+ w K)KI9
ll_Y (1+§_1k2_|_) +?Lk1 1 ¢ (Y My _I) 19
k§Do 1 1 =
- 1- Bk, k 0=0 (26)
v+xﬁ{ Yk
The term Dg denotes the driving term of the interchange instability ,
__oydpo
Do=—4-g @n

showing that the combination of the bad magnetic curvature and pressure gradient
causes the instability (Rosenbluth and Longmire). Equation (26) is the cigenvalue
equation for the dressed test wave. It is found that, compared to the case of three field
model, the driving term is decreased due to the influence of the parallel compressibility.
If the term of O(B) is neglected in Eq.(26), the model equation in the preceding article
(Itoh et al 1992a) is recovered.



It has been shown that the mode can be strongly destabilized by the current
diffusivity. The asymptotic form of the growth rate, in the small but finite nonlinear
Interactions, was given as 'y o< Als (Itoh et al 1993a, Yagi et al 1993). The low level
of turbulence easily influence the growth rate. The schematic picture of the growth rate
as a function of the level of the background fluctuations are shown in Fig.1. The
marginal stability condition is determined by the balance between the nonlinear
destabilization and nonlinear stabilization. The nonlinear stationary state is different
from the conventional picture in which the linear growth balances with the nonlinear

damping.

3.2 Marginal Stability Condition

The marginal stability condition for the least stable mode dictates the anomalous
transport coefficient. We here obtain the marginal stability condition by settin gyY=0in
Eq.(26).

We solve this equation by the Fourier transformation,

.09 =g‘_‘h exp (imf-in{) £ ko Kexp(ikx) (28)

The mode is microscopic, and the {m,n) component is localized near the relevant
rational surface r = 1 (x denotes the distance from the rational surface, x = r - r5). The
(m,n) modes are treated separately in Eq.(26), because Eq.(26) is linearlized for the
dressed test wave. We solve each (m,n) component and suppress the suffix (m,n)
unless necessary. The argument k is the radial mode number in this subsection.

In the vicinity of the rational surface, the parallel mode number is expressed as
kj = kgsx where s is the shear parameter q-2(dg/dr) and q is the safety factor. By
employing the Fourier transformation, x is replaced by the operator i(d/dk). The

eigenvalue equation is then given as

24 L 4 opypy k4<P(k) 1-pis2d L el) =0
@ dk'?dk L1 K 053k 'Efdk_f

(29)




where the perpendicular wave number is given as
K =k3+ Kk (30)

The equation is now expressed in terms of the second order ordinary differential
equation with respect to the radial mode number k.

The purpose of this article is to present the analytic insight of the problem. As
was examined in the study of the ballooning mode turbulence in tokamaks (Itoh et al.
1994a, Yagi et al. 1993), we employ the similar approximation so as to neglect the first

derivative dp/dx, This approximation yields
d2 Mk aDg
B— -0+ g7 0=0 (31)
( umck kgs? i
from Eq.(29). As was shown in previous article, we writey in the form as

Dg’z A (u J 12 (32)

where h is the numerical coefficient to be determined by the eigenvalue equation. For

the simplicity, we introduce the normalized wave number as

b= kl(l”l) (33)
and
173
ool

By using this normalization, the eigenvalue equation is rewritten as

ad?
(1 + goblo+z?) Z)E(z? +{H-b)-g;22 - gz*-g2°}) 0=0 (35)

where the coefficients {gj; j=0-3} are given as

(36)



81=3b, g2 =3 and g3= 1/b. The term of gy is the contribution of the parallel
compressibility. This term is the higher order correction with respect to the inverse
aspect ratio. Equation (35} is solved in a manner of perturbation, and the term

gob(b+22)2 is replaced by a constant

g=gob+z37) | (37)

The bracket <> indicates the average

(6) = rlofax (| o) (9)

the constant g and coefficient gg has a similar order of magnitude.
Neglecting g1 and g as in Yagi et al (1993) and replacing the term gg by g, the
eigenvalue equation Eq.(35) is solved by the WKB method as

CELA g N = 59

The eigenvalue H is a function of b (i.e., normalized poloidal mode number) as
H=b"+Cp (40)

where the coefficient C is given as
sa (4 f =312
C=(1+g (xl Jl—ygdy) 4D

The eigenvalue H takes the minimum H* of

H* =9(c/)* (42)
at the mode number satisfying
b = b* = (C/8)9 (43)

This mode number specifies the least stable mode. The coefficient h is given as

h=H*372, (44)



We here confirm that the correction due to the compressibility is of the higher
order in the inverse aspect ratio. In case of g = 0, we have the estimations b* =0.43 ,

<b(b+z2)"2> = 1.4 and h=0.8 (Itoh et al 1993d). By using these numbers, we have

g= 1.9-1%-)52 (46)

We here note the relation Dy =& {df/dr)Q' and Q' = O(1) in the form of
normalization. This relation shows that g is of the order € for the standard plasma
profile, $-1(df/dr) ~ O(1). This result confirms that the contribution of the parallel

compression is small, and the treatment by the perturbation is validated.

4. Transport Coefficient

4.1 Transport Coefficient
Using the result of the stability boundary for the least stable mode, we have the

transport coefficient as

-y

This result shows that the transport coefficient is the function of the Prandtl numbers,
e/l and ¥/, . The Prandtl numbers are found to be close to unity. For the case of

interchange mode, they were given as
Hell =23, y/Hy =20 {48)

in the limit of g =0 (Itoh et al 1993d). Since the term with the coefficient go is the
correction of the order €, we substitute these numbers of |Lg/ 1| and ¥/[L, 1nto Eq.(47}

and have the transport coefficient, in the normalized form , as

X= Tig o (49)

This result confirms the previous theoretical estimate on the thermal conductivity. The
numerical coefficient, 1.3/(1+g), is slightly smaller than the previous article (Itoh et al

1992) in which it was given as 3. It is because that only an order estimate was given



analytically in the preceding article. The careful numerical study of the variational
equation has also shown the reduction in the numerical coefficient (Miller 1992).
The relation between the various transport coefficients are also obtained. In the

stationary turbulent state, the relation
ui+pf=pi+y? (50)

holds in the limit of the large aspect ratio. The derivation is given in the appendix B.

Using Eqs.(48) and {50}, we have

Mg (51)

2.3, 2.0, I =

n
I
o
|

He X
by Ly

The transport coefficient is expressed in the physics quantity by substituting the

expression of the normalization. The thermal conductivity is given as
_ dﬁ)31'2 c\2VaA
w=roly) ()R 2

where ? is the normalized radius, r/a, illustrating that the term §2v 4/R has the
dimension of the diffusivity. The coeffictent F is the numerical coefficients

representing the geometrical factor and is given as
_ 13 {9 )2(;2 dQ)”
F0= 1 (i) (s &)

In the limit of high-aspect-ratio torsatron/Heliotron configuration, the magnetic
structure is approximately expressed by use of the Bessel function (Solov'ev and

Shafranov 1970). In such a case, an analytic estimate yields
dﬂxgl_@ZI d(?“) (54)
& TR OB\

where m is the toroidal pitch numberand# is the polarity of the helical windings,

respectively. This gives an analytic expression of the geometrical factor F as




1[0V m1 4"
=13 (%) (3 ) >

where the coefficient 1.3/(1+g) is replaced by 1.3, since g is the correction of the order
of £.

It is noted that this formula of the thermal conductivity ¥ has the same [
dependence as that obtained for tokamaks. The geometrical dependence appears in the
term F. The important role of the magnetic shear is shown. As has been known
widely, the magnetic shear is inevitable in the system with magnetic hill. The
anomalous transport coefficient is predicted to depend like s-2. When the magnetic
shear is weak, the transport coefficient becomes very large. This is in contrast o the

case of tokamaks and stellarators (Itoh et al 1994a, Fukuyama et al. 1994a).

4.2 Comparison with Experiments
The prediction of the theory is discussed, comparing to the experimental results.

Firstly, the dimensional dependence of i is
b < TR B (56)

and is independent of that of density {n]. Secondly, the formula of yincludes the radial
dependence of (B/n)3'2, not T3/2, and predicts a larger transport coefficient near edge.
The radial profile of F is slightly decreasing towards edge, but the overall radial
dependence can be increasing toward edge, because the profile of (8/r)*2is an
increasing function towards the edge. Figure 2 illustrates a typical example of the radial
profile of the predicted thermal conductivity. The theoretical predictions of ), (1) that )
is larger near edge and (ii) that it is larger for higher temperature at fixed radial location,
are consistent with the results of experiments (Sano et al. 1990, Wagner et al 1993).
Third, the thermal conductivity which is deduced from heat pulse propagation,

e, can be larger than the thermal conductivity at the steady state. If the density



profile is much flatter than that of the temperature, and if only temperature is modulated

at the heat pulse, the theoretical formula of y gives the relation

Xmp= 2.5% (57)

as was discussed in the case of tokamaks. A larger thermal conductivity for the heat
pulse, that the power balance analysis, was observed in Heliotron-E experiments
(Zushi 1991).

The theory predicts that the ion viscosity is also enhanced to the level of thermal
conductivity. Anomalous ion shear viscosity is observed recently in CHS device, and
the relation L) ~ ¥ was observed (Ida et al 1992). This observation is consistent with
theory. The dependence of the ion viscosity on various plasma parameters would be
studied in future and then more detailed comparison would be possible.

The geometrical dependence explains couples for differences, compared to
tokamaks, in helical systems.

The point model analysis gives the energy transport scaling law as
g o A(iJ.zBo.Sn 0.6,2Rp—06 ® 04 (58)

where A; is the ion mass number, P is the heating power and <F> is the average of F
near the boundary. (The reason to choose the edge value is discussed in Itoh et al
1991.) By comparing the various configurations with different pitch number and
aspect ratio, we find that the improvement of the confinement by the increase of the
shear (s2 term in F) is almost completely offset by the increment of the magnetic hill
Q. The coefficient F weakly depends on geometrical parameters such as pitch
numbers. Itis concluded that the energy confinement time g depends on the toroidal
magnetic field, not on the poloidal magnetic field. This result may explain the fact that
Tg seems to depend only weakly on the rotational transform or on magnetic shear in
experimental data. The predicted indices to B, n, a, R and P, as a whole, are consistent

with the experimental scaling law (Sudo et al 1990).



The geometrical dependence of the confinement time is recently studied in
Heliotron-E and CHS devices by changing the location of the magnetic axis. When the
magnetic axis is shifted inward or outward, by applying the vertical field, the magnetic
shear and well change. The competition between the change in shear and well is shown
in Fig 3 for the case of CHS device. When the magnetic axis is shifted inward, the
increment of the shear dominates than the increment of hill, so that the minimum of the
factor F appears. When the axis is shifted far outside, the coefficient is predicted again
to decrease. This 1s due to the reduction of the magnetic hill. This reduction of hill has
been discussed in relation with the MHD instability in torsatron/Heliotron
configurations (See, e.g., Wakatani et al 1992). The trend of T was observed in
experiments that Tg shows optimum when the axis is shifted inward (Obiki et al. 1991,
Kaneko et al. 1991), supporting, qualitatively, the theoretical result. However, g
continuously decreases when the axis is shifted outward, and no turn-over has been
observed in Heliotron-E and CHS experiments. This bad confinement in the case of
outer shift would be partly attributed to the poor heating efficiency (see e.g., Hanatani
etal. 1992, Itoh et al 1991b). Recently, it was also found that the particle pinch
changes sign (1.e., there is outward flow) when the plasma is placed outside (Iguchi et
al. 1994). Itis possible that there is other additional loss mechanisms than the thermal
diffusion in the case of the outward shift.

We finally note the characteristics of fluctuations. The theory predicts the
relation between the relative density perturbation to the potential perturbation. It was

calculated from the refation fi/n =~ (./¥)eq/T , giving

1. elﬁq% B@f)ﬁ (59)

where L, is defined as n'/n = -1/ and D, ={(R%2a?) @p/df) dvdf) . For the case
of Heliotron-E plasma, D = 60aB(0)/L., and q'/q =4 hold (L, being the pressure

gradient scale length), and we have

L, B@
i- (2507 (©0)



The term in the bracket is order 1/10, showing that density fluctuation is smailer than
the potential fluctuations. (This means that the correction remains smali, supporting
the neglect of @« term in the equation of motion.) The ratio of the density fluctuation to
potential fluctuation is predicted to be larger if the pressure profile becomes broader.
Fluctuation measurements in high power heating experiments have shown that fi/n is
smaller than ed/T (Zushi et al 1988, Ritz et al 1991), which is consistent with our
theory. The result of the broader profile is also consistent with the observation by

Zushi.

5. Transport Coefficient in Stellarators

The transport analysis in the system with magnetic well was derived in the
previous article (Itoh et al 1994a). We here characterize the magnetic configuration of
the stellarator plasma only by the magnetic well and magnetic shear. Thereis a
possibility that the helical deformation influences the anomalous transport. However,
we here neglect the influence of the helical deformation of the magnetic structure on the
microscopic instabilities.

The theory of the self-sustained turbulence in the case of finite magnetic well
was developed. The thermal transport coefficient for the system with weak magnetic

shear was given as
1=F0 qz(RifB)m(mip) 22 (61)

where F; denotes the geometrical factor for stellarators. This coefficient was obtained,
by considering the anisotropy of the fluctuations, which is noticeable when the shear is

weak. (See appendix in Itoh et al 1993c for the detailed derivation.) We have

- 1
he= V(2985912828 ©2




where § = dq/dr)q ' and §=3- o and o is defined as o = q?R(dB/dr). This result
shows that the thermal conductivity remains small numbers even though the shear is
weak. Itis noted that the anisotropy of the turbulence is characterized as

(B 128 (1+48% % 4 287 )
k3 &€ (12&E

The result shows that the wave number is dominated by the poloidal component when
the magnetic shear is weak. This also implies that, in the weak shear limit, the radial
wave length becomes longer, having the characteristics of the global mode. As the
typical poloidal mode number is O(10) to O(100), the analytic theory which assumes
the localization of the mode may be invalid when the magnitude of the shear parameter
8] is O(1/100). The case of [§] — O is given by the extrapolation of the results of
[f]=0 .

We compare the transport coefficient, Egs.(61) and (62) to those of tokamaks
and helical systems. Generally speaking, the similarity to tokamaks is prominent,
rather than to helical systems. This is due to the fact that the magnetic well suppresses

the interchange instability and the ballooning mode is dictating the anomalous transport

in stellarators and tokamaks.
The prediction of the theory for stellarators is as follows.

(1) The dimensional dependence is

Bd = 11’ '] (64)

as in the case of helical systems.

(i1) The gradient of pressure generates . Therefore  can have a large value
near edge where temperature is low. The same q-dependence is obtained as in the case
of tokamaks. However, the radial profile of the safety factor is much flatter compared
to tokamaks, and so is the geometrical factor associated with the magnetic
configuration, Fsq2. The radial shape of y is governed by the dependence (B/n)y2.

For usual plasma profiles, this quantity is weakly increasing towards edge. The



thermal transport coefficient is increasing towards edge in stellarators, but is much
flatter than in the case of tokamaks.

(11i) The estimate of the energy confinement time is given as

Tg o< A?‘zBO'Sq'O'SIlO'GaZRO'4P_O'6 Lp0_6 (65)

This result predicts a positive dependence on the rotational transform. The power
degradation is also recovered.

(iv) The peaking parameter of temperature, T¢(0)/<T>, is predicted to show
only weak dependence on the edge safety factor. This is in contrast to the theoretical
result of tokamaks. This is because the profile of the safety factor is almost flat in
stellarators, and the shear parameter does not depend on the parameter g(a) strongly.
fIn tokamaks, the shear parameter is a strong function of the edge q value, so that the
theory predicts the peaking of temperature at high edge g-value. See Itoh etal 1994a
and Fukuyama 1994b.]

(v} The similar argument to helical systems is given for the thermal conductivity
deduced from the heat pulse propagation. If only the temperature is perturbed,
enhancement of Xyp over ¥ is predicted from the theory.

(vi) The typical perpendicular wave number of the most unstable mode is given
ask; 8 =~ 1/ /& . Due to the weak shear, radial correlation length is predicted much

Ionger than the poloidal correlation length. The estimate of the fluctuation level was

given as
ep
T2 (66)

This relation implies that the level of turbulence is predicted in the range of
strong turbulence. Compared to Y, there appear an additional dependence of eB/T.
Since the temperature T is a decreasing function of radius, the level of fluctuations are
much larger towards edge. This radial increment is much stronger than y itself.

These predictions are compared to experimental observations. First, the

dependence of x was studied. The dependence like [)] o< [T]I‘S[R] _I[B]_2 seems o



be consistent with observations. Detailed information on the radial profile is published
(Wagner et al 1993). The experimental observation is characterized that the radial
profile is weakly increasing towards edge; this is clearly different from the prediction of
the neoclassical theory. The radial shape is closer to flat than in the case of tokamaks.
This nature is in accord with theoretical result. The parameter dependence of the energy
confinement time is also compared. The dependencies on the power, density and
magnetic field seem to show satisfactory agreement.

The comparison of the dependence on the edge safety factor is not
straightforward. This 1s because the strong corrugation in the q(a) dependence of g
has been observed in experiments on W7-A and W7-AS. One of the reason for the
sharp reduction of Tg near the lower order rational number of q (i.e., when q(a) is
rational number and is written as my/nj, np is a small integer) would be the destruction
of the magnetic surfaces (See for instance, Wobig et al. 1987 and Jaenicke et al 1993).
Therefore our theory may not reproduce experiments well when q(a) is a lower order
rational number. If the q(a) dependence of 1g is deduced from experiments by
choosing the local peaks of 1g, the dependence such as tpe< g(a) 08 is obtained (Brakel
et al 1992). This observation is consistent with the prediction by the theory.

The experimental observations have shown that the g-dependence of the
peaking parameter is not prominent in stellarators (Wagner et al 1993). It seems to be
consistent with theoretical prediction. This would support that the difference in the
shear profile causes the distinction of the temperature profile in tokamaks and
stellarators. More careful study will be performed in future.

A noticeable difference is seen in W7-As experiment in comparison with
tokamaks. The thermal conductivity deduced from the heat pulse propagation was
found to be almost equal to ¥ of the power balance. One may consider that this seems
to be a contradiction to the theoretical prediction. Itis noted, however, the relation Ypp
=2.5% s obtained in theory by the assumption that only the temperature is perturbed.
In the real experiments, not only the temperature but also the radial electric field

inhomogeneity could be modulated. As was shown in Itoh et al 1994b, the influence of



the radial electric field inhomogeneity is much effective in stellarators than in tokamaks.
(This is due to the weak shear in stellarators.}) The mechanism, thai the associated
perturbation in the radial electric field inhomogeneity suppresses the increment of yyp

over ¥, will be discussed in a separate article.

6. Summary And Discussion

In this article we develop the theory of self-sustained turbulence and the
associate anomalous transport in the toroidal helical plasmas. The study is made for the
torsatron/Heliotron plasmas and for the stellarator plasmas. The former configuration
is characterized by the magnetic hill and strong magnetic shear. In such a case, the
interchange mode turbulence can develop. [n the latter configuration, the magnetic well
exists and the turbulence is composed of the ballooning modes. The results for theses
configurations, combined with that for tokamaks, clarifies the role of configurations on
the anomalous transport coefficient.

The theory of self-sustained turbulence is extended in such a manner that the
effect of plasma compression along the magnetic field line is taken into account. The
nonlinear theory for the four field model of the plasma is developed. The ion viscosity
for the parallel velocity is newly obtained by this extension. The similar procedure like
the previous article is developed. By the help of the renormalization and mean-field
approximation, the model equation is derived for the dressed test waves. The equation
is lineartized for the dressed test wave; all the nonlinearlities are renormalized in a form
of the diffusion coefficient. The main conclusion of this extension is summanzed as
follows. The effect of the parallel compressibility causes the reduction in the
anomalous transport coefficient. However, the correction is higher order with respect
to the inverse aspect ratio. This confirms the validity of the previous work in which the
parallel compression was neglected. The diffusivity of the parallel momentum is found
to be close to that of the cross-field momentum. The simplified expression is obtained

as

Wi tleiyily=1:23:2:3 (67



This result provides a basis for the study of the dynamics associated with the L-H
transition, where the diffusion of the parallel and perpendicular momenta play important
roles (Itoh et al 1988, 1592b).

The formula of thermal conductivity is obtained for helical systems and

stellarators. The thermal conductivity in toroidal systems can be generally given as
= (dB\32, ¢ \2Va
ol (% <68>

and the influence of the magnetic configuration (tokamak, stellarator, helical system)
can be summarized in the coefficient Q. In the helical systems, the balance between the
shear and magnetic hill determines the geometrical factor. For the system with =2,
the shear may be increased by increasing the pitch number m. However, the increment
in m is associated with the enhancement in the magnetic hiil. The gain by the shear is
almost offset by the increment in the hill. In the stellarator plasmas, the dependence on
the rotational transform is predicted. This implies that the energy confinement time will
be enhanced by increasing the rotational transform. An additional method to improve
the confinement is predicted. The equation (62} shows that if the shear is negative,
(i.e., dg/dr<0) the thermal conductivity is further reduced. If the central rotational
transform is kept smaller than the edge value in stellarators (for instance by driving
small current near the axis), the energy confinement time will be improved. The role of
the radial electric field was analyzed in Itoh et al (1994b,c). Combining these analyses,
it is expected to progress the understanding of the anomalous transport phenomena.
The theoretical framework of the self-sustained turbulence is enlarged in this
article. However, there are still lot of tasks which requires future theoretical research.
One is the influence of the finite gyro radius effect and coupling with the dnft waves.
For the case of helical systems, we have the estimates /Y is O(1/10), showing that
these effect are small. This relation may not, however, hold for all cases and the
analysis on the finite-gyro radius effect is necessary. Also important would be the

effect of the incoherent convection of the turbulence. It was pointed out that the



turbulence level is affected by this effect, and the method of two-scale direct interaction
approximation has been developed (Yoshizawa 1985). The kinetic treatment of the
problem needs further research. Comparing the result of Ohkawa with that of the
kinetic treatments in the slab plasmas (Kadomtsev et al 1985), we see that the generic
feature is not affected by the kinetic plasma response. However, there can appear a
difference on the parameter v¢/v4 as was shown by Connor (1993). Finally, the basic
picture of the nonlinear destabilization by the convective nonlinearlity of the current
must be studied by nonlinear simulation. Preliminary study has been performed by
Yagi etal 1994. It was confirmed that when the turbulence level reaches a certain
threshold, the nonlinear destabilization occur. Due to this nonlinear destabilization, the
level of turbulence grows much larger than the value which is predicted by the balance
between the linear growth and nonlinear ion viscosity and thermal conductivity. The

study for the anomalous transport still requires much theoretical efforts.
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Appendix A: Equation for the Test Wave
Taking the back interaction with the driven mode (k2), the equation for the test

mode (denoted in this appendix by tilde as § ) is given as

%‘f— + oo, O+ V30 -9, T - l@xQ v = 2.1, U] (A1)
V. o~ 1f] Ny 2% ]

5t Vio- E(g +[9o, ‘j']) +nJ-A VT = Eé[@—l’ Jo] (A2)
3 .

P s oo B+ BV, V-1 3=~ Fo .03 A3
%% +lop 9+ Vi B ViT=-Zlo_,,v] (A4)

where the suffix O denotes the equilibrium distribution, -1 denotes the mode -k, and 2
denotes the driven mode k.
The right hand side of Eqs.{A1)-(A4) shows the contribution of the back

ground fluctuations. The result of the driven mode is expressed, symbolically, as

2 11 HipHisHyy [o1, U]

Jo | _|Ha HpHypHy || [0, 1] (AS)
P2 | | Hay Hap Hyz Hay |} [0, 7] |
vy

Ha1 Hap Hiz Haz/ \ [0, 9]

Explicit form of the matnx elements {Hj; (i,j:1-4)} is seen from Eqs.(5)<(9). We have
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The night hand side of Eqs.(A1)-(A4) are given as

[p4, Udl 11 Hi Hiz Hyy (o1, [o1, ﬁ]]
[0, 2] | _ | Hai Hyp Hys Hyy - [o1, 9] (AT)
[9-1. P H3y Hyy Hyg Hay i [o_,, [y, B1]
[o-rvd/ \HaHeHoHu/\[p_ [p, 9]

As in the previous article, we assume that the typical wave length is much
shorter than the radial scale length of the envelop of the turbulence. It is also assumed
that the convective transport of the wave is not important. Under these circumstances,

we have the estimate (Itoh et al. 1993¢)

N N ARE AL
[(p_p[c:>1,Y]]=ﬂ—oi";—1 et | %)Y (48)

The assumption of the isotropic turbulence is employed as

2 0¢;
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o,

2
o0, 2 kue
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(A9)

and the operator [.1, [¢1, Y 11 is replaced by the diffusion operator. The nonlinear
terms in Eqs.(A 1)-{A4) are given as

{9, U3 o [F Hjp HzHyy 9

; [p1, 1] _ [k 119,|"| Hyy Hypy Hyz Hyy V2 J
N ppd | & 2 |HaHpHpHy [ 43
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(A1Q)

As in the previous article (Itoh et al 1993c), we take the diagonal terms. Substituting

Eq.{A10) into Egs.(A1)-(A4), we have

%—? + [0, U] +1. V30 - v 3- Qi = 11V 10 (all)
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where the suffix a denotes the contribution of the ExB nonlinearlity. The coefficients

are given as
Elku‘hl Hy (A15-1)
U = %‘, “‘_lgpl_lezz (A15-2)
Xa =§ @;ﬁHB (A153)
and
o =% 'k—”;ai (A154)

The transport coefficients {{i ,, te» Xa» Hya > in principle, depend on the wave number
of the test wave, since the coefficients H;j depends on the wave number of the beat
mode, ky =k + kj.

Summing up the classical term and ExB nonlinear term, the total diffusion

coefficients are obtained.

Appendix B: Ratio of Transport Coefficients

It is noted that the anomalous terms {JL |, W, %, 1) } are in the same order of

magnitude. The Prandtl number has been calculated for three field models (Itoh et al



1993d). The ratios between ion viscosity of parallel motion and perpendicular motion

is derived from the four filed models discussed here.

The transport coefficients are derived as

_ 10 B1
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k 2
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It is shown that the compressibility effect is the higher order in inverse aspect ratio. We
therefore approximate I',, = ¥, ¥, and neglect B terms in Eq.(B4) and K;. The terms
$us ¥ j» Yps Vo) are given by {u (K3 KA Ak g } in the stationary furbulence
which is realized by the marginal stability condition. Substituting these refations into

Eqs.(B1)-(B4), we have
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where we neglect the O(f) term in Eq.(B4), which was found to be higher order

correction of g(see eq.(46)). From these relations we see that a sum rule holds as
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The Prandil numbers, le/H and y/LL, were obtained for the case of interchange mode.

They were given as (Itoh et al 1993d)
W/p, =23, %1, =2.0 (B10)

Substituting Eq.(B10) into Eq.(B9), we have the relation between various transport

coefficients as
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Figure Captions

Fig.1

Fig.2

Fig.3

Schematic drawing of the growth rate of the test mode as a function of the
fluctuation level. Solid line indicates the nonlinear instability leading to the self-

sustained turbulence state. The dashed line denotes the conventional model.

Radtal profile of the thermal conductivity for the case of Heliotron-E plasma .
Profiles are chosen such that py@) = p@[1 -+ A] , TO/TO =n®a0 .
A=0.05T0)=500eV,B=2T,n0) = 5x10m3, and = 0.1. The
hatched region indicates the experimental observation. The solid line shows 2.2

times of the theoretical result. Dotted line employs a factor 9.

Geometrical form factor F of the thermal conductivity at 1/a=0.9 is shown as a
function of the location of the major axis, Rax, for CHS plasma (in an
arbitrary unit). Arrows on the abscissa indicate the condition of the maximum
plasma volume (a) and that the bumpiness of the toroidal field vanishes at the
axis (b}, respectively. The quality of the confinement becomes optimum at Ry
= 0.93 m.
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