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Abstract

The transport coefficient for the magnetized plasma, which has been
obtained by use of the method of self-sustained turbulence, is applied to the
reverse field pinch (RFP). The dependence By «<n34l;is obtained (By plasma
pressure divided by the poloidal magnetic pressure,n: plasma density and 15
plasma current). This result gives an explanation of the experimental
observation of the RFP scaling, By e<1/l, The theory of anomalous transport
unifies the L-mode scaling laws in the tokamaks, stellarators and

Heliotron/torsatron as well as RFP.

Kevwords:  reverse field pinch, anomalous transport coefficient, self-

sustained turbulence, magnetic braiding, L-mode



1. Introduction

Recently, efforts have been paid for understanding of the anomalous
transport coefficient in toroidal plasmas [1]. Itis of vital importance from the
view point of the realization of the ignited plasmas. It should also be noticed
that this task is one of the most challenging problem in the modern physics [2].
Experimental observation has become abundant, and various tests for the theory
of the cross field transport have been performed for tokamak plasmas {3]. The
study on the stellarators has been flourished as well [4]. Comparison of the
ancmalous transport theory with helical plasmas further improves the physics
basis for the anomalous transport phenomena. New method of the plasma
turbulence and anomalous transport, i.e., the self-sustained turbulence {5],
seems to provide an agreement with observations in various aspects {6]. It
would also be meaningful to examine the applicability of the anomalous
transport theory [5] to the confinement feature of the reverse field pinch [7].

In this article, the transport coefficient, which has been obtained for the
system of magnetic hill by use of the method of self-sustained turbulence, is
applied to the reverse field pinch (RFP). The nonlinear theory of the pressure
driven turbutence and transport is used for RFP. The dependence B, o<
n¥4a3/4/T,is obtained (By, n, a, and I are the plasma pressure divided by the
poloidal magnetic pressure, density, minor radius and plasma current,
respectively). This result gives an explanation of the experimental observation

of the RFP scaling, B, < n/l,,.

2. Modetl of the RFP
We employ the model of the high aspect ratio RFP. The cylindrical
coordinate (r, 0, z) is employed. The toroidicity is neglected and the magnetic

field is given by the Bessel function mode! [8] as

B, =Bylo({o), B, =Bol,({r) - )



The magnetic field is characterized by parameters Bgand . The parameter { is
in the range of Ca = 3. When the plasma pressure is finite, the magnetic field
structure 1s deviated from that in Eq.(1). However, this modification does not
change much the shear parameter and the magnetic hill.

This magnetic configuration is characterized by the magnetic hill. The

magnetic curvature K is calculated from the relation

[, _&r?
r2 = R2h2f§r\ 212 R (2
= OO T Ny = SOt 4 ] =
as
2
K= adB _ _ Gar (3)
B dr ~ 4

The important feature of the RFP configuration 1s the strong magnetic

shear. We use the definition of the magnetic shear parameter s as

RB;—,R%B, /1)’

s=
B,+1,RB /¥

(kp=0ati1=1y (4

where R is the major radius. It is noted that the usual expression, s = rq'/q
(which assumes qR/a>>1, q being the safety factor), is inappropnate for REP,
since q-value vanishes in the RFP plasma at the surface of By= 0. From the

definition of Eq.(4), we have the estimations of the parameter s as
8 ~ &Q(E),. _ l§3Rr2 (5_1)
“Bdrt /78

near the origin. Near the field reversal surface, we have

S = B%B; ~—LR (5-2)



The radial profile of s 1s characterized by the parameter {, and s remains of the

order of R/a.

3. Transport Coefficient

The transport coefficient for the system of magnetic hill has been
calculated based on the method of the self-sustained turbulence [5,9]. In the
presence of the magnetic brarding, the thermal transport coefficient of electrons
is obtained as

_1lipar 312 ¢ \2Va
%= 5z(RB'xR/) (mp) =M (6)

where B is the ratio of the plasma pressure to the total magnetic pressure, v, 1s
the Alfven velocity and @y is the electron plasma frequency. The coefficient M
denotes the enhancement factor of the magnetic braiding to evaluate X,. In the
electrostatic limit, we have M = 1, and M = my/3m,, for the case of magnetic
stochasticity [9].

The condition for the magnetic braiding has been obtained as

B =B @)
with the critical pressure gradient [9]

B.= (&) 1%l ®
From Egs.(3) and (5), we have k= {2a%/4 and s ~ {R. This gives an estimate

4
Bo= TR (9
The condition for the magnetic braiding, Eq.(7) with Eq.(9), is satisfied in the

range of our interest, 3, = 0.2, which was given in experimental observations.
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Combining Eqs.(3), (5) and (6), an explicit formula of the thermal
transport coefficient is obtained. Substituting this formula into the transport
code, one may perform the simulation study as has been done for tokamaks
[6]. in thisarticle, however, we perform the study on the parameter
dependence, rather than on a concrete number of the confinement time. For
this purpose, we perform the zero-dimensional analysis.

Noting that shear and curvature are order unify parameter, we have the
zero-dimensional dependence of <>, by emploving the estimation §' = P/a.
(The brackets <> indicate the space average.) In the parameter domain of
reverse field configuration, 2.4 < af, < 3.5, the ratio of the average poloidal
field energy <B 224> to the total magnetic field energy, <B%2u¢>, takes the
value in the range from 0.5 t0 0.6, and is a weak function of al. We therefore
use the approximation as  ~ B42. By use of these simplifications we have the

zero-dimensional dependence as

(T)312
=8 (10)
By
where
go 3 m, O2R2 .

- miliZ el 5232

and T; = T is assumed. The coefficient g includes the parameter { and is
expressed by universal constants. The estimation of the shear parameter s and
the magnetic curvature was given as s = (R and x = {%a%/4. With this
estimation the parameter g is evaluated as

3 3m,

g E 862 (12)



4. Energy Balance and Confinement

The energy balance equation for the Ohmic heating plasma is given as

{x)a=2 (a)T) = ()3)? (11)

where 1 18 the resistivity and J is the current density. We write the resistivity

as

N =NZT 2" (12)

where T is the universal constant and Zgyy includes both the effects of impurity
collision and possible anomalous resistivity due to plasma turbulence.
From the energy balance equation (11) and resistivity coefficient (12),

we have

(0K 2 = E—fgzefr(Bp)z (13)

Combining Egs.(10) and (13), we have

aB?
T4 =8 Z " ﬁ (14)

where g = 1¢/gio?, and the bracket < > is suppressed for the simplicity.

From Eq.(14), we have the scaling of the temperature
T=g" Mz fali*B n-1# (15)
or

T oe Zeléfa‘ 3141 o La (16)




The poloidal beta value has the dependence B, «<nTBy> The scaling of the

temperature (16) provides that for the poloidal beta as
By o M4z fam TN an

where N is the number per unit iength, N = naZ.
The energy confinement time is estimated as T = a%y. From the

estimates of Egs.(10) and (16), we have the scaling of the energy confinement
time as

T oe M- 5BN3E] E1]f2a1 18 (18)

The fusion triple product ntT scales as

7T o< M~ n8 2118 (1%

5. Comparison with Experiments

These results are compared with experimental observations.

(i) By scaling
It has been widely discussed that the experimental observation is

summarized in a form as {7]
Bp < N/I, 20

There is some dispersion in experimental reports. Some variation has been

reported in [10] as



06-06
Bpe< NV7IT (21}

(TPE-1M20) or

Bpes NOII 12 (22)

(MST, HBTX-1B). The result, which is in the range of Egs.(20) to (22),
seems to agree with theoretical result Eq.(17) even if one considers the

experimental variations.

(it) T, scaling
The dependence of the electron temperature has been studied, and a

summary was proposed as [11]

T o< 198002 (23)

(REPUTE). This agrees well with theoretical prediction Eq.(16).

6. Summary

The theory of anomalous transport, based on the method of the self-
sustained turbulence, is applied to the RFP plasma. The RFP configuration is
charactenzed by the magnetic hill, so that the formula of the interchange
turbulence is used. Owing to the high beta value, the magnetic braiding is
possible in the self-sustained turbulence. This effect appears as the
enhancement factor M. The theory provides the dependencies as
T o< ZYda- 3’4Ipn‘ 14 and By Zlta- 1"41\13""1; !, The experimental
observation supports this prediction. The theory of self-sustained turbulence
and anomalous transport unifies the L-mode scaling laws in the tokamaks,

stellarators and Heliotron/torsatron as well as the experimental scaling law in
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RFP. This result provides a prospect of the RFP confinement based on the
first-principle study of the anomalous transport coefficient.

The theory of anomalous transport has also provided the level of
magnetic turbulence {9]. The measurements on the fluctuations as well as the
fluctuation-driven transport have made progress recently [12,13]. It would be
fruitful, in future, to compare the prediction of the fluctuation level to the
experiments.

The anomalous resistivity is often referred to in the RFP plasmas. Our
theory predicts that 8, depends weakly on Zeyr. Therefore the possible role of
the non-classical resistivity in the Ohmic heating term does not infiuence our
conclusion much.

The magnetic braiding in the RFP reduces the absolute values of the
energy confinement time and beta value. However this does not alter the
dependence on nand I, Itis also noted that the thermal conductivity for the
jons is 1/¥M times smaller than that of electrons [9]. This theory naturally
provides the explanation that the ion energy confinement is much better than
that of electrons. The quantitative evaluation of the energy confinement time is
possible by performing the transport simulation. More realistic form of the
magnetic field would be necessary for the detailed comparison with

experiments. These are left for future study.
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