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Abstract

The bicoherence of fluctuationsin a system of drift waves and zonal flowsis discussed.
In strong drift-wave turbulence, where broad-band fluctuations are excited, the
bicoherence is examined. A Langevin equation formalism of turbulent interactions alows
usto relate the bicoherence coefficient to the projection of nonlinear force onto the test
mode. The dependence of the summed bicoherence on the amplitude of zona flowsis
clarified. The importance of observing biphase isaso stressed. The results provide a
basis for measurement of nonlinear interaction in a system of drift waves and zonal flow.

Keywor ds: bicoherence, biphase, drift wave turbulence, zonal flows, geodesic acoustic
modes, data analysis



|. Introduction

Plasma turbulence has been subject to intensive study in last decades[1-3]. This
is because the turbulent transport is akey in realizing the controlled thermonuclear fusion,
and is because the plasma turbulence plays akey rolein structure formation. Such efforts
in understanding the structure formation in laboratory as well as natural plasmas are
explained in, e.g. [4-6].

In addition to progress in theoretical understanding of plasma turbulence, efforts
have a so been focused to the direct measurement of the elementary nonlinear interactions.
Theidentification of mesoscale structures (such as zonal flow [4] and geodesic acoustic
modes, GAMs[7]) and their interaction with ambient turbulence is a highlight of the
experimental study of plasmaturbulence. The identification of a mesoscale zonal flow
has been in progress[8], and the efforts in measurement the nonlinear interactions are
also on-going. One routine method in measuring the nonlinear interactions among the
fluctuating quantities is the bicoherence method [9, 10]. This allows us to measure the
strength and spectra of triplet correlations. The application of this method to plasma
turbulence has been widely discussed [11-19]. Very recently, the bicoherence method is
applied to the experimental study of GAMs and background turbulence [19]. Although
the bicoherence method is routinely applied to the plasma physics experiments, the
interpretation of the bicoherence data has not been thoroughly considered. The progress
of modelling plasma turbulence, and, in particular, the importance of the nonlinear
interaction between the mesoscal e structure and broad band turbulence has stimulated the
efforts to understand the measurement of the bicoherence of signals[15]. More detailed
study in understanding bicoherence datais required.

In this article, we discuss the bicoherence of plasma turbulence in the presence of
broad band drift wave turbulence. The assumption of alarge-degree-of freedom has
given aformulation of Langevin equation of a dressed-test mode [20]. Based on this
picture, the bicoherence of fluctuating fields is formulated as a projection of the nonlinear
force onto the dressed-test mode. Bicoherence coefficients are evaluated in terms of the
spectrum of the fluctuating field, the coefficient of nonlinear interaction, and the
autocorrelation time of the fluctuations. Two cases are investigated. Thefirst isthe case
where alarge number of unstable modes are excited and arein a stationary state due to the
mutua nonlinear interactions. The second example iswhen the zona flow and GAMs
exist in broad band fluctuations. Properties of bicoherence data are explained. A clear
contrast of biphase between these two cases are demonstrated. A brief discussion on the
statistical convergenceisalso presented. Thisstudy provides an interpretation of the
bicoherence signal in understanding the nonlinear interaction process.

1. Response of Test Wave which is Target of the Experimental Study



An example of the dynamical equations of fluctuation fields, in the range of drift
wave frequency of strongly magnetized plasmas, is expressed as[2]. Among many
issues in the nonlinear processes of drift wave turbulence, the importance of the E x B
nonlinearity and the phase relations between different fluctuating quantities (such asthe
density and electric field) have been recognized. The former is essential in nonlinear
stabilizing process of drift waves and in driving zona flows from drift wave fluctuations.
The latter isthe key for driving turbulence and turbulent transport. The details of the
theories covering both mechanisms are explained in [6]. Despite the importance of cross-
correlation function between different fluctuating fields, focusis made onthe E x B
nonlinearity in thisarticle, and the fluctuating fields are represented by a scalar variable g
(such as electrostatic potential). Thissimplification is accepted as the first step, because
this nonlinearity has essential role in the interaction of the drift wave and zonal flow. One
can use aone-field model such as Hasegawa-Mima equation [21]. The nonlinear
dynamical equation may be written in aform

g+ (—y+ilo)g=2Ngg. )

wherey isalinear growth rate, Ly representsthe linear frequency, and N denotesthe

coefficient of nonlinear interaction. N may include operators, asis explicitly shownin
83.3.

In this chapter, we discuss a response of atest mode against a nonlinear
interaction between a particular pair of modesin turbulent fluctuations which are
composed of alarge number of excited modes. Thisresponseisabasisfor clarifying the
relation between the bicoherence and nonlinearity in dynamical equations,

The nonlinear terms for drift wave turbulence are modelled as

D2Ngg= -vrg+$ )

where v isthe nonlinear damping rate of the target mode and S is arandom fluctuating
force (noise) [2, 20]. It has been shown that the nonlinear term can be separated into the
memory term (coherent term) which is coherent to g and into the fluctuating force
(incoherent term), the projection of which onto g vanishesin along time average [22].
The spectral functions satisfy the relation [2,3,20]
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The eddy-damping rate vt isafunction of the turbulence spectrum asis explained in [2,
3].

The response of atest mode against a nonlinear effect from a particular pair of
modes is deduced by use of Eq.(2). The fluctuation spectrum is expressed, in general,
by the space-time Fourier decomposition, e. g., a power spectrum I(k, u)) . However,
such acomplete dataset is not easily accessible, because experimenta data are usually
taken by one-point (or few-points) measurements. The bicoherence analysis of
experimental data has often been performed on the temporal Fourier spectrum. Such
studies have relevance for cases where the condition of the wavenumber matching is
approximately satisfied if the frequency matching conditionisfulfilled. In studieswhere
only frequency spectrum is used, the effective nonlinear interaction is analyzed, in which
matching conditions of wavenumbers are treated as an average. Although limited in
accuracy, this smplified data analysis has arelevance in investigating the interactions
between drift waves and zonal flows as afirst step. Considering these experimental
situations, we introduce Fourier components as

glt) = 2‘ gpexp (—ipt) . (4)

We choose one particular frequency @ for atest waved,, . Animposition of the
test mode g,, affectsthe p -Fourier component 9, viathe nonlinear term N, .9, 9, -

(Note again that the matching conditions of wavenumbers are included (as an average) in
cal culating the nonlinear coupling coefficient N i, .) A response of g, to theimposition

of the nonlinear term g,,, is evaluated asfollows[1]. We separate oneterm N, 9,9,

from the total nonlinear termsz N g9 , and express the rest in terms of the nonlinear

damping term and fluctuating force as
Z Ngg_Np,wgp—wgwe_ipt:_Vll'g'i's/ . (5)

according to the same theoretical argument that isused in deriving Eq.(2). The response
of gy against theimposition of g, iswritten as

gtgp+<vil'_y+i(LO_p))Qp:Npgp—wgm'FS,p . (6)

This process has been employed in statistical theories (see, e.g., [1,2].) The meaning of
this equation isthat, in calculating the dynamics of g, , the nonlinear effects except

NpwIp-wde arecombinedinto v'T g and $ . That IS, the LHS of Eq.(6) denotes the



response of the "dressed mode". Because of alarge degrees of freedom of fluctuations
excited in the plasma of interest, we employ the test wave approximation

VT=V7 (7a)

and

S-S, (7b)

The meaning of Eq.(7) isthat 2 N gg and 2 N g9 — Np,mgl{,_mgme—ipt are

approximately equal to each other because of the large numbers of modes are excited in
broad-band turbulence. The concept of the dressed mode and the validity of the
approximation isdiscussed in [1]. Equation (6) is solved as

gp=exp(—vpt)f_;dt’exp(vpt’)Np,wgp_wgmgp, (88)
and
0p=exp (—vpt)f_; dt'exp (Opt’) S’p , (8b)

where V= v p=vp + i( Lo— p) with the help of Eq.(7a). Thefirst term in the RHS of
Eq.(8a) represents the response against the imposition of the test mode, and 9,

represents the response against the noise excitation through nonlinear interaction with
other modes. (Equation (8b) isaBrownian motion if S is Gaussian white noise.)
Because EQ.(7b) holds for the broad band turbulence, an approximate relation

(9sf)=(l95") ©

holds.
Theintegrand 9,9, inEq.(8a) losesthe coherenceast — t'" becomes longer

than the autocorrelation time, T, p = Min (rc, w T, p- w) , Where t¢, , isthe
autocorrelation time of the fluctuation ra}, =Vt p—Yp . By noting thisfact, the integral
in Eq.(8a) is evaluated as

exp (—vpt)ﬁo dt’exp (th’) Np, 09p-090=Tp Np, 0Ip-0do (10)



with
p:vgl{l—exp(—\?pra’ p>} (12)

That is,

Jp=TpNp, oIp-udo +p . (12)
A similar argument appliesto 9, _, , and we have

Ip-0=Tp-oNp_o Ip96+ Ip_o (13)

wherethereation g™, =g, is used.
Equations (12) and (13) show the responses of the Fourier componentsg, and

Op-o agansttheimposition of the test mode g, . Theamplitude g, is separated into
TpNp 0Ip—0wde anddp; theformer isthe result of the nonlinear interaction 9 _ 9, ,
and the latter, 9, , is statistically independent from the former.

[11. Bicoherence Analysis
The bispectrum estimator B{w, p) , the squared bicoherence b%(w, p) , and the

summed-bicoherence 2. b2 are defined as

Bw, p) = (959p-0Do) (14)

Blw, p|

(9890-u/ 007}

‘ 2

b w, p)= (15)

and
2. 6%0)=26%0,p). (16)

We see that this bispectrum estimator isin proportion to the projection of the response g,
to the nonlinear force N ;0,9 -, . Relations between the bicoherence and nonlinear

interactions are discussed in this chapter.



A. Case of broad band turbulence

We first study the case where fluctuations are composed of broad band spectrum
asisshowninFig.1(a). Inthiscaseall of three components, 9, , 95—, and g,, , follow

similar relations like Egs.(12) and (13). We have

9u="Ty Nu), pgpg;)—u) +0o - (17)

From Egs.(12), (13) and (17), the bicoherence is expressed in terms of the nonlinear
terms. The derivation isgiven in the Appendix A and the results are summarized here.

1. Summary of results

Bispectrum indicator
The bicoherence indicator , which isthe third order correlation function, is

expressed in terms of the second-order correlation functions and the nonlinear coupling
coefficient N as

3(00, p): rpN;,w<gp_w2 gm2>
+Tp—w'\'p—w,p<9p29w2>+Tw'\'w.p<9p—w29p2>' (18)

In order to have more explicit interpretations, we employ an estimate for the RHS of
Eq.(18). Three terms of spectral functionsin the RHS of Eq.(18), < Op-o ‘2\ Jo 2> ,

<9p2 9m2> , and <gp—ngp2> , depend on p and  but have similar magnitude

for broad band fluctuations. One can have smplified evaluation as
A . 2 12

Syuared bicoherence
Substitution of Eq.(19) into Eq.(15) gives the squared bicoherence. In order to

have comparisons with experimental observations, a crude estimate,

9p-of 195|°
< p<9m2>p >~<9P2>- (20)




isemployed here. This approximation is employed wheng,, , 9, andg,_, belongsto

the broad-band spectrum. Asisshown in the Appendix A, the squared bicoherenceis
given, with the help of Eq.(20), as

2

N7 < 9p| > (21)

TpNp,o* pr

b(p, ) p—w,p T To N, p

If phases between T, N, , Tp_o Np_ p and T, Ng, , arerandomly distributed, one

has

TpNp ot Tp—w Np-w,p* Tw N, p

2
‘ p pm‘ +‘Tp—wNp—w,p‘ +‘Tme,p‘ ‘ p pw‘ . (22

The randomness of phases betweent, Ny, , , Tp_, Np_(, p andt, N, , are

discussed for the case of drift wave turbulencein 83.3.

Summed bicoherence
Equations (21) and (22) provide the expression for the summed bicoherence

23‘ pNp.o <\9p\> 3|t N pm\ of?, (23)

with

of*=22(0,"). (24

2. Interpretation
Equation (18) shows that the magnitude of B(w, IO) isan indicator of the

nonlinear force. The bispectrum estimator is composed of the terms which are
proportiona to the projection of the nonlinear term g9, _ ,9,, onto the response of g, to

the nonlinear force Np ,9p 9 - Thus, the bispectrum indicator provides the

evaluation of nonlinear interaction in observed data. The squared bicoherence shows the
magnitude of the three-mode interaction.
In addition, Eq.(19) shows that the phase of B(w, p| , the biphase, is directly

related to the phase of the nonlinear coefficient N ;, o - The biphase indicates the phase of

Tp N, p, o - Thatis, the biphase shows the relation between the nonlinear force and the



test mode. Thus, the magnitude as well as the biphase give information about aspects of
the nonlinear interactions. For instance, the measurement of the phase of B(w, p) gives

the phase of N once the rea frequency and the decorrelation rate are measured.
Theinterpretation of EQ.(23) isasfollows. Theterm ‘ Np, o H g \ represents a

nonlinear force (in anormalized unit in adimension of the 'frequency’), and

p|Np, 0| 9] indicates the competition between this nonlinear force and the effective

correlationtime T, . Equation (23) isrewritten as

1 ~2
vaw~r3tpg > bq0) . (25)

The RHS is composed of three terms, \g » Tp andz 52(03) . Thefluctuation level \g\

is measurable, and the correlationtime T, isevauated by the autocorrelationtime ¢ p

which is measured from fluctuation data. Thus, once the summed bicoherence
2 52(00) is measured, the magnitude of the nonlinear coupling coefficient ‘ Np, o ‘ is

evaluated.

B. Case of a sharp peak within a broad band fluctuations
When the drift wave fluctuations coexist with the mesoscal e fluctuation, such as

zonal flow or geodesic acoustic modes (GAMS), the interaction between the modesin the
sharp peak and broad band fluctuations attracts attentions. Here, the suffix o indicates

the mode which belongsto the sharp peak of the spectrum, and ( p, p— m) denotesthe

broad band background turbulence. (SeeFig.1(b).) Thetest mode in asharp peak is
denoted by w here.

1. Response of a test mode

The amplitude of the modesin a sharp peak is considered to be strongly
influenced by a self-nonlinear interaction, not solely determined by the fluctuating force
from broad band turbulence. In the case of zonal flow dynamics, the negative eddy-
viscosity-like effect by the drift wave turbulence destabilizes the zona flows, contrary to
the case of drift waves for which Eq.(2) isused. Self-interaction is effective for the
saturation of the zonal flow [6]. We introduce the amplitude of the sharp spectral mode,
Oy, 0 » Which is assumed to be determined by the self-nonlinear effects and by the

excitation by turbulence force c;p Ngqga _o (i.e,theg pg’;, _o termissubtracted).

Imposing the nonlinear interaction term g pgfo _ o Onthetest mode, and one hasthe
response of g, after the similar procedure that gives Eq.(12). Thus,



v ="Tw Nw, pg pg;)—(u + 90,0 (26)

where the first term in the RHS represents the response against the besat interaction
N, pd pg;, _e ., and T, iscaculated after Eq.(11). The autocorrelation time of the test

mode T, , ismuch longer than those of background turbulence, T¢ _, , SO that T, in
Eq.(26) is replaced by the autocorrel ation time of background fluctuations t¢, p_, . That

is, one has an expression
goa':rc,p—u) Nu), pgpg:)—w-}_go),o . (27)

In other words, g,, iscomposed of acomponent g, o (which isindependent of
9p9p - ) and afluctuating component owing to the kick 9p3p — ¢, -

2. Bicoherence
The bicoherenceis given from Egs.(12), (13) and (27) asis explained in the
Appendix B. Theresult is summarized here.

Bicoherence indicator
The Bicoherence indicator is evaluated as

E(@, p) =<9§gp_wgm> :<"7p N;,w‘gp—m‘z""‘p—m Np—o, p‘gp‘z \%,0\2

+%6 p-oNo, f 9p—o| 9p|* (28)

Thefirst term (with parenthesis) in the RHS of EQ.(28) is due to the modulation of the
background fluctuation by the imposition of the test mode (e. g., zonal flow). Thelast

term in the RHS comes from the influence on the test mode by back-ground fluctuations.
Asisexplained in the next section, the phases of T, N;, o andtp_,Np_, o aeclose

to each other for the interaction between the zona flow and drift wave fluctuations [6].

. * 2 2
Based on the estimate T, N, m‘ gp_w‘ =Tp_o Np_o, p‘ gp‘ for components g, _,
and g , which belong to the broad-band spectrum, asimplified form of B may be used

for convenience as

50, P12 N, 5[ 1907+ s {950 o5 29

10



The term which is proportional to ‘ 9w, 0 ‘2 in the Bicoherence indicator has been pointed

out in[15]. The second term isthe contribution of the broad band turbulence, and
Lsz(w, IO) at o does not vanish even in the limit of ‘ 9o, 0‘2 —0.

The squared bicoherence
A simplified expression for the squared bicoherence is given in Appendix B as

62(03, p>z41|23_w‘ Np—w, p‘z‘ gw,0‘2+ 417[3—031:0, p—w Re(Np_UL pN:U1 p)gpz
-1

[, p-uNa o] 1990/ 95 [0 ") (30)

In obtaining Eq.(30),theaoproximaterelations<gpgp_w2>~<gp_wz><gp2> and
<gp_w2>~<gp2> are used, because 9, _, and g, belongtothe broad-band

spectrum. In addition, |9, o \2—: <\ (S \2> isemployed asisin Eq.(9).

Summed bicoherence
The summed bicoherence coefficient is then expressed as

where M isthe number of Fourier component, M = ; 1, the over-bar — isan average

over the Fourier component, M ‘C%_w‘ Np_ o, p‘Z:Zr%_m‘ Np_ o, p‘z ,|9?] isthe

level of background turbulence asis given in Eq.(24), and Ag2 isthe variance of the
amplitude of g,, , owing to the kicks from background fluctuations,

3 [tep-0No, o] 19p-u[9p|" =403 . (32)

(Note that the variation Ag3 is defined in atime scale whichislonger than tg, , butis
shorter than the time scale that g,, o varies.)

3. Interpretation

11



It should be emphasized that the phase of the Bicoherence indicator B(w, p) in

Eq.(29) can be different from that for the case of broad-band turbulence. For instance,
when  is chosen to be the frequency of zonal flows (zonal flow, GAMSs), the phase of
the B(w, IO) weakly dependson p . Thisis particularly noticeable when one study the

coupling between the drift wave and zonal flows.
Theresult Eq.(31) isinterpreted asfollows. (i) First, the summed bicoherence
2. 69w hasasharp and broad components: The first term in the RHS indicates a pesk

in the summed bicoherence, and the second and third terms a broad distribution in awide
frequency region. That is, the peak in the summed bicoherence appears at the peak of the
power spectrum. (ii) Second, the magnitude of the peak in the summed bicoherenceisin
proportion to the magnitude of the mode, the nonlinear interaction coefficient,

‘ Np_w, p ‘2 , the autocorrelation time of the background fluctuations, and by the number

of Fourier components, M , which are used in the dataanalysis. Thefirst termin the

RHS of Eq.(31), which comes from the modulation of background drift wave
fluctuations by imposed zonal flows, is proportional to M . Thisis because the majority

of the drift waves responds to the imposed quasi-coherent oscillation in asimilar way.
Asaresult of this, the summed bicoherence becomes larger as the number of Fourier
componentsincreases. (iii) Third, the detection thisfirst term of Eq.(31) ispossible, in
the data analysis, asfollows. When the pesk in the summed bicoherence 2. b ) is
obtained, (a) the dependence of 2 52(00) on the amplitude of the sharp mode \ Jo \2
must be studied, and (b) the peak height of 2, b2(®) must beinvestigated by observing
the effects of the choiceof M . (iv) Fourth, the second term is the contribution of the

broad band fluctuations, and is given by the same response as Eq.(23). The differencein
the numerical coefficients 3 and 4 isdueto (i) the difference in the number of
combinations, and to (ii) the difference in the phase difference among nonlinear
coefficients. (v) Fifth, the last term isasmall correction, when the self-nonlinear effects
for g, isstrong.

Some further comment may be made on the peak of the summed bicoherence.
When the peak is apparent in b%(w) , it is approximated as

2 600)~aM T3 [Np_y, 5|10, [ (33)

in the vicinity of the peak of Z 52(03) . The Fourier decomposition is usually made as
discretizing the frequency rage as p = NAw , where Aw isthe width of the frequency,
andn=0=x1, £2,---+M . When the half-width of the test mode at frequency ® is
narrower than Aw , then the peak in the Fourier series|g,,|* does not depend on the

12



choice of Aw . Inthiscase, if one performs a convergence study such asincreasing M
and decreasing Aw , the peck value of 2, b%() isin proportionto M . If Ao issmaller
than the half-width of the test mode, then M| g,, \2 converges to afinite number. Then
> b%w) aso converges.

Equation (33) shows that the magnitude of the nonlinear coefficient |N| is
messured by observing the total bicoherence 2, b®) together with the spectral
variables|g,, \2 and Ty . Theinformation of the phase of N isalso obtained from the

biphase.

V. Explicit Forms
An example is discussed for drift wave fluctuations. A normalized electrostatic
potential

Ln

n . Ps (34)

@
_|‘-ez

L
Mo pe + @
isintroduced, where N isthe density perturbation, Ng isthe average density, ¢ isthe
electrogtatic potential fluctuation, pg isthe ion gyroradius at electron temperature, and L,
isthe density gradient scale length. (The normalized variablesn and ¢ are of the order

unity in astationary drift wave turbulence[1].) The Hasegawa-Mimamodel givesthe
response of drift wave in the presence of zonal flow (pure zonal flow or GAMSs) as[7]

i« cp?d _ Cg Ux ykJ_ps
t¢d 1+k2p 2¢d L, H’d'Aﬂ)d} L m‘bzq’d, (35)

where the suffix d and z indicate drift waves and zonal flow, respectively, 4y istheradia
wavenumber of zonal flow, and kK denotes the wavevector of drift waves. The second

and third termsin the LHS of EQ.(35) stand for the linear response and nonlinear self-
interaction of drift waves, respectively. The RHS represents the coupling between the
zonal flow and drift waves.

The interaction of drift waves has the coupling coefficient

Cs kkkLp‘s1

~ 7. 36
Ln 1+klpS (36)

This coefficient has amagnitude like

13



4
Cs kJ_pg

NI= 20, 14 kepz

(37)

It should be noticed that the phase of Eq.(36) cantakeavalueinawiderange. Thisis
because the sign of the wave number in the poloidal direction ky is determined by the

diamagnetic drift direction, but the wave number in the radial direction ky can havea

wide variety (including complex values) for drift waves. The interaction between the
zonal flow and drift waves has the coefficient

_ Cs quykip‘s1

Ly l+kip§ ' (38)

In this form, one seesthat ky isnot included and isreplaced by dy . Thesignof Ky is

dominated by the propagation of drift waves relative to the diamagnetic drift velocity.
Therefore, the coefficient N keeps a same phase for components of drift wave

fluctuations.
The decorrelation time of drift waves through self-nonlinear interaction has been
evaluated as

Tt~ hk pgjosd (39)

in the strong turbulence limit, where h( k lps) stands for anumerical coefficient of the

order of unity. For the case of Eq.(23), one has

2
. k.k2p3
bw)~3| 1 iPs | 40
250) (h(klps)“kip%) 0

That is, the summed bicoherence has aweak dependence on the drift wave amplitude so
long as the wavenumbers are unaltered. Equation (36) shows that the biphase of B

spreads over the range of 0 and 2 .
In the case of the GAMs and drift waves, Egs.(31) and (38) gives the expression
for Eq.(31) (where thefirst and second terms are kept) as

D 6%w)~4M

2.3 2 2 2.3 2
1 axK1P3 oz +4 1 kkipg (41)
hkpps) 1+kip2| 6§ | hkypg) 1+kip3| ~

14



S0 long as the frequency width for decomposing the Fourier seriesis wider than the half
width of the GAMs peak. The wavenumber d, for zonal flowsis smaller than ky for

drift waves. However, the dependence on M possibly gives alarger value of the
summed bicoherence. From Egs.(40) and (41), the total bicoherence at the frequency of
zonal flows and that at the drift wave range of frequencies are compared as

~ 2+ (42)

> p3arift) 3

2. 6GAMS) 4 (qx)zdﬁ

It is also noted that the total bicoherence of Eq.(41) is dependent on the local gradient of
the zonal flow, dx =| 67 - Vo .

It isalso useful to compare Eq.(42) with the estimate of the theory. Inthe
predator-prey model, one has the ratio of the zonal flow amplitude and the fluctuation
amplitude of drift waves as

(43)

N

4
:(kx) TL=Ynd
Ux/ Ydamp -

wherey andy,g arethelinear growth rate and nonlinear damping rate (via drift wave-
drift wave interactions) of drift waves, respectively, and Y gamp isthe (collisional)

damping rate of zonal flow. (See section 2 of [6] for more details.) Substituting Eq.(43)
into Eq.(42), one has

2. b%GAMS| 4 (gx>zw+4
X

- Y damp 3

> b3 arift) 3

(44)

The zonal flow is excited wheny| >Ygamp holds, so that the first term on the RHSis

usually much greater than unity when the zonal flows are excited.

V. Summary

In this article, we discussed the bicoherence spectrum for drift wave turbulence in
strongly magnetized plasma. The case without zona flows and that with zonal flows
were analyzed. In the presence of abroad band turbulence, the nonlinear interactions are
theoretically formulated in aform of the Langevin equation, and the bicoherence spectrum
was shown to indicates the projection of the nonlinear force onto the test mode. Based on
this formalism, the magnitude of bispectrum was investigated for the drift wave -zonal
flow systems. It was shown that the total bicoherence for the zonal flows (zona flow

15



and GAMys) increases as the amplitude of the zonal flowsincrease. Comparison between
the bispectral datafor zonal flows and for drift waves were also given. These findings
generalized theresult in ref. [15].

Explicit formulafor bispectrum are summarized in the text, such as Egs.(19),
(21), and (23) for the interaction of broad-band fluctuations, and Egs.(29) and (31) for
the interaction of a sharp peak with broad band fluctuations. In these expressions, the
bicoherence is expressed in terms of the coefficient of the nonlinear interaction and
guantities which are given by quadratic spectral functions. Therefore, by measuring the
fluctuation spectrum, autocorrelation time, and bispectral functions, the nonlinear
interaction of each three-wave coupling is quantitatively estimated from experimental data.
Thus, the study of bicoherence will provide afruitful understanding of nonlinear
interactions in turbulent plasmas.

It might be useful to add afew comment on the statistical variance, whichis
caused by finite number of realizations. The statistical error for the bicoherence indicator
Is estimated as

~J|%TR 9p ‘3 (45)

where g, isatypical value of Fourier amplitude in the broad band spectrum and Ng is

the number of realizations employed in the analysis. The variance for the total
bicoherenceis given as

- M
Sb—N7R (46)

where M isthe number of Fourier components. In order to have a statistically-

admissible estimates, the bicoherence indicator and total bicoherence must be larger than
Eq.(45) and EQ.(46), respectively. Equations (40) and (41), combined with Eq.(46),
provide the necessary number of realizations NR .

By observing the dependence of the total bicoherence on the amplitude of zonal
flows, one can directly measure the nonlinear interaction of zonal flows and background
drift waves directly. The dependence on the number of Fourier component was also
clarified. The other issueisthe phase of the bispectrum estimator. The importance of
observing the biphase was also demonstrated. When  is chosen at the frequency of
zonal flows, the phase of the bispectrum estimator B(w, p) has aweak dependence on

p. These propertieswill be used in the experimental study of turbulence [24]. It should
be noticed that in the regime of the Dimits upshift, where the mgjority of fluctuation
energy is converted into the zonal flows, the ratio Eq.(44) becomes very large.
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It should be noted that the analysisin this article is vaid for cases where the
condition of the wavenumber matching is approximately satisfied if the frequency

matching conditionisfulfilled. This meansthat the coefficient of nonlinear interaction
Np, o isan effective value, in which averaging over the wavenumber space isincluded.

Experimental estimatesof N, , , e.9., Egs.(25) or (33) provide effective values. This

shortcoming is due to limitations that only few-points measurements are usually available.
It is necessary to measure the space-time Fourier decomposition, e. g., a power spectrum
I (k, 00) and more compl ete bicoherence studies are necessary in order to establish better
understanding of the system of drift waves and zonal flows.

Theresultinthisarticleislimited to asingle-field model, and the crossphases
between multiple fluctuating fields (e.g., N, ¢ , T, etc.) are not considered. This

smplification is relevant asthe first step, becausethe v - Vv nonlinearity has the
essential rolein the interaction of the drift wave and zonal flow. The result hereis applied
to the study of coupling between the zonal flow and drift waves. Nevertheless, the other
nonlinear interactions (e.g., v - V p and other nonlinear terms) can aso beinfluentia in
guantitative determination of the turbulence level. Experimental studies on cross
bicoherence analysis may be possible in near future, and theoretical interpretation for
themisrequired aswell. Such analysis on multiple fieldsis|eft for future studies. Itis
noted that one point measurement has limitation in measuring the absol ute va ue of
nonlinear interactions. When the coherence lengths of triplet modes9,, 9,-,, andg,,

are different, additional care is necessary.
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Appendix A Bicoherence in a case of broad band turbulence

We first study the case where fluctuations are composed of broad band spectrum
asisshowninFig.1(a). For thiscase, thetriplet average of three components, g,

Op-» andg,, isdiscussed in thisappendix. From Egs.(12), (13) and (17), one has

ngp—mgm = g:)gp—u)gw +tTp N:), wgp—wgwgg—mg:o
+7p_oNp_w, pP9p969p90 * To Ne, p9p—09p8pdp—o - (A1)
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In the lowest order of T, N;,m , onehasgqgaz‘gq‘z (forq=p, w, p—w ), so that

Eq.(A1) isrewritten as

g?)gp—(ng(u = gz)gp—(ug(u + Ip N;;, (D‘ gp—w‘z‘ 9o ‘2

2 2 212
+7p—0Np-0,d9p| 19|+ 7o Na, g 9p-u| 19p|"  (A2)
in the lowest order of T, N;, o - Thefirst term is mutually uncorrelated,
(99p-0) =0 (A3

inthelimit where S istaken asanoise[2,22]. One has

Blo, d)= (959p-0lu) = Tp N}S,w<gp_w2 gw2>
*Tp-oNp-o, p<gp29w2>”w No, p<9p—w29p2> - (A4

In order to have more explicit interpretations, we employ an estimate for the RHS
of Eq.(A4). Threeterms of spectral functions in the RHS of Eq.(A4), < Ip—o ‘2‘ g 2> |

<9p2 9m2> , and <9p—m29p2> , depend on p and  but have similar magnitude

for broad band fluctuations. One can have smplified evaluation as
R x 22
Bw, q)”‘(Tpr,wJﬂp—wNp—m,p”% N, p><gp_w 9p| > . (A5)

The squared bicoherence is defined as Eq.(15). Substitution of Eq.(A5) into
Eq.(15) gives

(A6)

A crude estimate,
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(A7)

<gp<:ng>p o)

is employed here, because al of 9 _, , 9p and g, belong to the broad-band spectrum.

This allows direct comparisons with experimental observations. This approximation
gives

N’ _oN 2<gp > (A8)

b(p’) TpNp ot Tp—wNp-w, p*TwNe,p

If phases between T, N, ), Tp_ Np_o, p and T, N, , arerandomly distributed, one
has

N, N +1, N

TpNp, ot Tp—w Np-o,p , P

‘ p pm‘ +‘ p- wNp—w,sz’%Nw,pz ’“3‘%'\';,(1)‘2- (A9)

The summed-bicoherence Z b® is defined as Eq.(16). Equations (A8) and (A9)
provide the relation

;3‘ »Np.o| <gpz>~3fp’\'§,m292, (A10)

with |o[*= 2% (| gp|?)

Appendix B Bicoherence in a case of a sharp peak within a broad band
turbulence
Thetriplet product is given from Egs.(12), (13) and (27) as

gz)gp—u)g(u = g:)gp—(x)goo,o-'-rp NE), m‘gp—w‘z‘ g(D,O‘z

Tp—o Np—o, p‘gp‘z‘ gm,o‘z"'tc, p—o N, p‘gp—m‘z‘gp‘z . (B1)

where the relation gqg; = ‘ Jq ‘2 isalso used. The average of thefirst term

<g;gp_wgm, o> is considered to vanish becauseg; andJp_,, areresponsesto
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independent noises. Thus one has the evaluation of the Bicoherence indicator by use of
the lowest-order correlation as

E(w, p) :<g;gp—wgw> :<IP N;,w‘gp—w‘z-"rp—w Np—w, p‘gp‘z ‘gw,o‘z

+rC,p—u) Nw, p‘gp—wﬁgp‘z- (BZ)

Thefirst term (with parenthesis) in the RHS of Eq.(B2) is due to the modulation of the
background fluctuation by the imposition of the test mode (e. g., zonal flow), and the last

term in the RHS comes from the influence on the test mode by back-ground fluctuations.
Asisexplainedin 8lll, the phases of T, N, ,, andt,_,, Np_,, p arecommon for the

interaction between the zonal flow and drift wave fluctuations. Based on the estimate
Ty N;,w‘gp_w‘zzrp_w Np_o. p\gp\z , asimplified form of B may be used for

convenience as
Q@Lpy:am_wN;_m@gpﬁg%0f+tqp_mNmppp_mﬁgpf (B3)

Theterm which is proportional to ‘ 9w, 0 ‘2 in the Bicoherence indicator has been pointed

out in[15]. The second term isthe contribution of the broad band turbulence, and
Blw, p| aw doesnot vanish even in thelimit of |, 0‘2 -0,

The squared bicoherence is calculated from EQ.(B3) as

4‘5%_(0‘ Np—(», p‘z‘ gp‘4‘ gm, 0‘4

(| 990-|)00 )
4Tp—u)tc, p—o Re(Np—w. DNZO) p)gp—m29p4 gw’o‘z
<gpgp_m2><gm2>

Te,p—o N:o, ngp—wﬂgp4

([9pg-o "9/’

For further transparency of argument, the approximate relations

(6950 )= (| 5-o )| o) 20|50 )= g5") areused, becasegy
and g, belong to the broad-band spectrum. In addition, an approximation

6%w, p| =

=+

(B4)
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‘ 90,0 ‘2»: <\ Jo \2> isemployed asisin Eq.(9). By the help of these approximations, the
first term in Eq.(B4) is estimated as

41:%—(1)‘ Np—(n, p‘z‘ gpﬁ gw,0‘4

([3590-[* (9P

and is dependent only weakly on the choice of p . The second term in Eq.(B4) may be

':413%_03‘Np_0),p‘2‘ gw,o‘z , (B5)

approximated as

Aty _4Te p-o Re<Np—m, pN:J, p) gp—m‘z‘ gp‘A‘gm,O‘z

([9pg0-o")l5[*)

* 2
~4Tp—mtc,p—wRe(Np—m, pNo, p)gp . (B6)

The last term in Eq.(B4) is rewritten as

‘tc, p-—w Nu), ngp—u)zgp2

. (B7)
90

Thus, smplified expressions for the squared bicoherence and total bicoherence are given
as Egs.(30) and (31).

21



References

[1] K. Itoh, S-I. Itoh and A. Fukuyama: Transport and Structural Formation in
Plasmas (I0OP, England, 1999)

[2] A.Yoshizawa, S.-1. Itoh, K. Itoh: Plasma and Fluid Turbulence (10P, England,
2002)

[3] J. A.Krommes: Phys. Reports 360 1 (2002)

[4] For areview, seefor example, P. H. Diamond, D. W. Hughes and E.-J. Kim:
"Self-consistent mean field electrodynamics in two and three dimensions’ in The
Fluid Mechanics of Astrophysics and Geophysics eds. A. M. Soward, C. A. Jones,
D. W. Hughes, N. O. Weiss (Taylor and Francis, London, 2003) Vol 12, pp.145

[5] A. Yoshizawa, S.-I. Itoh, K. Itoh and N. Y okoi: Plasma Phys. Contr. Fusion 46
R25 (2004)

[6] P.H.Diamond, K. Itoh, S.-I. Itoh, T. S. Hahm: Plasma Phys. Contr. Fusion 47
R35 (2005)

[7] N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968)

[8] A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T.
Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S.
Ohsima, S. Nishimura, M. Isobe, C. Suzuki, T Akiyama, K. Ida, K. Toi, S.-I.
Itoh and P. H. Diamond: Phys. Rev. Lett. 93 165002 (2004)

[9] M. Hino, Spectral Analysis (Asakura Shoten, Tokyo, 1977).

[10] Y. Kim and E. Powers, |IEEE Trans. Plasma Sci. PS-7 120 (1979)

[11] Ch. P. Ritz, E. J. Powers, T. L. Rhodes, R. D. Bengtson, K. W. Gentle, Hong
Lin, P. E. Phillips, A. J. Wootton, D. L. Brower, N. C. Luhmann, Jr., and W. A.
Peebles, P. M. Schoch and R. L. Hickok, Rev. Sci. Instrum. 59, 1739 (1988).

[12] Ch. P. Ritz, H. Lin, T. L. Rhodes, and A. J. Wootton, Phys. Rev. Lett. 65, 2543
(1990).

[13] B. Ph. van Milligen, E. Sanchez, T. Estrada, C. Hidalgo, B. Brafias, B. Carreras,
L. Garcia: Phys. Plasmas 2, 3017 (1995).

[14] B. Ph. van Milligen, C. Hidalgo, E. Sanchez, M. A. Pedrosa, R. Balbin,. I.
Garcia-Cortes, and G. R. Tynan, Rev. Sci. Instrum. 68, 967 (1997)

[15] P. H. Diamond, M. N. Rosenbluth, E. Sanchez, C. Hidalgo, B. Van Milligen, T.
Estrada, and B. Brafias, M. Hirsch and H. J. Hartfuss: Phys. Rev. Lett. 84, 4842
(2000)

[16] G. R. Tynan, R. A. Moyer, M. J. Burin, C. Holland: Phys. Plasmas 8, 2691
(2001)

[17] R. A. Moyer, G. R. Tynan, C. Holland, and M. J. Burin: Phys. Rev. Lett. 87,
135001 (2001)

[18] C Holland, G R Tynan, P H Diamond, R A Moyer and M J Burin: Plasma Phys.
Control. Fusion 44, A453 (2002)

22



[19] Y. Nagashima,. A. Ejiri, and Y. Takase, K. Hoshino, K. Shinohara, K. Tsuzuki,
K. Uehara, H. Kawashima, H. Ogawa, Y. Kusama, and Y. Miura, T. Ido: Phys.
Rev. Lett. 95 095002 (2005)

[20] S.-I. Itoh and K. Itoh: J. Phys. Soc. Jpn. 68, 1891, 2611 (1999)

S.-1. Itoh and K. Itoh: J. Phys. Soc. Jpn. 69 408, 427, 3253 (2000)
[21] A. Hasegawa and K. Mima, Phys. Fluids 21 87 (1978)
[22] H. Mori: Prog. Theor. Phys. 33 423 (1965)
H. Mori and H. Fujisaka: Phys. Rev. E 63 026302 (2001)
H. Mori, S. Kurosaki, H. Tominaga, R. Ishizaki, N. Mori: Prog. Theor. Phys.
109 333 (2003)

[23] T.Ido, Y. Miura, K. Hoshino, K. Kamiya, Y. Hamada, A. Nishizawa, Y.
Kawasumi, H. Ogawa, Y. Nagashima, K. Shinohara, Y. Kusama, JFT-2M group:
“Electrogtatic fluctuation and fluctuation-induced particle flux during formation of
the edge transport barrier in the JFT-2M tokamak” 20th | AEA Conf. on Fusion
Energy (Portugal: IAEA, 2004) EX/4-6Rb

[24] Y. Nagashima, et a., paper in preparation.

23



Fig.1
@ (b)

9(w)

® p-ow p frequency ® p—lm P frequency

Fig.1 Schematic drawing of the spectrum. A broad band spectrum (a) and that with a
shahp peak (b).
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