
O n  t h c  B i c o iⅢcrcnc c  A n a l y s i s  o f  P l a s m a  T l l r b u l c n c c

K Itoh Y N“ =ashim■ S I Isヽ P11 1)1■mond A lit sと Vヽ』

ド4 Ynsiond A 「 ukHyanlど

(1(。CCiVCd ―  フ、■=  23、 2005)

N lllS-822 ()ct 200S



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

      
   
  Inquiries about copyright should be addressed to the Research Information Center,  

  National Institute for Fusion Science, Oroshi-cho, Toki-shi, Gifu-ken 509-5292 Japan.  

  E-mail: bunken@nifs.ac.jp 

 
<Notice about photocopying> 
 In order to photocopy any work from this publication, you or your organization must obtain 
permission from the following organizaion which has been delegated for copyright for clearance by the 
copyright owner of this publication. 
 
Except in the USA 
 Japan Academic Association for Copyright Clearance (JAACC) 
 6-41 Akasaka 9-chome, Minato-ku, Tokyo 107-0052 Japan 
 Phone: 81-3-3475-5618  FAX: 81-3-3475-5619  E-mail: jaacc@mtd.biglobe.ne.jp 
 
In the USA 
 Copyright Clearance Center, Inc. 
 222 Rosewood Drive, Danvers, MA 01923 USA 
 Phone: 1-978-750-8400   FAX: 1-978-646-8600 

 



1

On the bicoherence analysis of plasma turbulence

K. Itoh1, Y. Nagashima1, S-I Itoh2, P. H. Diamond3, A. Fujisawa1, M. Yagi2, A.

Fukuyama4

1National Institute for Fusion Science, Toki 509-5292, Japan
2Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580, Japan
3Department of Physics, University of California San Diego, San Diego CA 92093-0319,

U.S.A.
4Department of Nuclear Engineering, Kyoto University, Kyoto, 606-8501, Japan

Abstract

The bicoherence of fluctuations in a system of drift waves and zonal flows is discussed.

In strong drift-wave turbulence, where broad-band fluctuations are excited, the

bicoherence is examined.  A Langevin equation formalism of turbulent interactions allows

us to relate the bicoherence coefficient to the projection of nonlinear force onto the test

mode.  The dependence of the summed bicoherence on the amplitude of zonal flows is

clarified.  The importance of observing biphase is also stressed.  The results provide a

basis for measurement of nonlinear interaction in a system of drift waves and zonal flow.

Keywords: bicoherence, biphase, drift wave turbulence, zonal flows, geodesic acoustic

modes, data analysis
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I. Introduction

Plasma turbulence has been subject to intensive study in last decades [1-3].  This

is because the turbulent transport is a key in realizing the controlled thermonuclear fusion,

and is because the plasma turbulence plays a key role in structure formation.  Such efforts

in understanding the structure formation in laboratory as well as natural plasmas are

explained in, e.g. [4-6].

In addition to progress in theoretical understanding of plasma turbulence, efforts

have also been focused to the direct measurement of the elementary nonlinear interactions.

The identification of mesoscale structures (such as zonal flow [4] and geodesic acoustic

modes, GAMs [7]) and their interaction with ambient turbulence is a highlight of the

experimental study of plasma turbulence.  The identification of a mesoscale zonal flow

has been in progress [8], and the efforts in measurement the nonlinear interactions are

also on-going.  One routine method in measuring the nonlinear interactions among the

fluctuating quantities is the bicoherence method [9, 10].  This allows us to measure the

strength and spectra of triplet correlations.  The application of this method to plasma

turbulence has been widely discussed [11-19].  Very recently, the bicoherence method is

applied to the experimental study of GAMs and background turbulence [19].  Although

the bicoherence method is routinely applied to the plasma physics experiments, the

interpretation of the bicoherence data has not been thoroughly considered.  The progress

of modelling plasma turbulence, and, in particular, the importance of the nonlinear

interaction between the mesoscale structure and broad band turbulence has stimulated the

efforts to understand the measurement of the bicoherence of signals [15].  More detailed

study in understanding bicoherence data is required.

In this article, we discuss the bicoherence of plasma turbulence in the presence of

broad band drift wave turbulence.  The assumption of a large-degree-of freedom has

given a formulation of Langevin equation of a dressed-test mode [20].  Based on this

picture, the bicoherence of fluctuating fields is formulated as a projection of the nonlinear

force onto the dressed-test mode.  Bicoherence coefficients are evaluated in terms of the

spectrum of the fluctuating field, the coefficient of nonlinear interaction, and the

autocorrelation time of the fluctuations.  Two cases are investigated.  The first is the case

where a large number of unstable modes are excited and are in a stationary state due to the

mutual nonlinear interactions.  The second example is when the zonal flow and GAMs

exist in broad band fluctuations.  Properties of bicoherence data are explained.  A clear

contrast of biphase between these two cases are demonstrated.  A brief discussion on the

statistical convergence is also presented.  This study  provides an interpretation of the

bicoherence signal in understanding the nonlinear interaction process.

II. Response of Test Wave which is Target of the Experimental Study
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An example of the dynamical equations of fluctuation fields, in the range of drift

wave frequency of strongly magnetized plasmas, is expressed as [2].  Among many
issues in the nonlinear processes of drift wave turbulence, the importance of the    E × B

nonlinearity and the phase relations between different fluctuating quantities (such as the

density and electric field) have been recognized.  The former is essential in nonlinear

stabilizing process of drift waves and in driving zonal flows from drift wave fluctuations.

The latter is the key for driving turbulence and turbulent transport.  The details of the

theories covering both mechanisms are explained in [6].  Despite the importance of cross-
correlation function between different fluctuating fields, focus is made on the    E × B

nonlinearity  in this article, and the fluctuating fields are represented by a scalar variable g

(such as electrostatic potential).  This simplification is accepted as the first step, because

this nonlinearity has essential role in the interaction of the drift wave and zonal flow.  One

can use a one-field model such as Hasegawa-Mima equation [21].  The nonlinear

dynamical equation may be written in a form

    ∂
∂t g + – γ + iL0 g = N ggΣ . (1)

where γ  is a linear growth rate,   L0  represents the linear frequency, and  N  denotes the

coefficient of nonlinear interaction.   N  may include operators, as is explicitly shown in

§3.3.

In this chapter, we discuss a response of a test mode against a nonlinear

interaction between a particular pair of modes in turbulent fluctuations which are

composed of a large number of excited modes.  This response is a basis for clarifying the

relation between the bicoherence and nonlinearity in dynamical equations,

The nonlinear terms for drift wave turbulence are modelled as

   N ggΣ = – νT g + S (2)

where   νT  is the nonlinear damping rate of the target mode and S  is a random fluctuating

force (noise) [2, 20].  It has been shown that the nonlinear term can be separated into the

memory term (coherent term) which is coherent to g  and into the fluctuating force

(incoherent term), the projection of which onto g  vanishes in a long time average [22].

The spectral functions satisfy the relation [2,3,20]

   
g2 =

S S

2 νT – γ
. (3)
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The eddy-damping rate   νT  is a function of the turbulence spectrum as is explained in [2,

3].

The response of a test mode against a nonlinear effect from a particular pair of

modes is deduced by use of Eq.(2).   The fluctuation spectrum is expressed, in general,

by the space-time Fourier decomposition, e. g., a power spectrum    I k, ω .  However,

such a complete dataset is not easily accessible, because experimental data are usually

taken by one-point  (or few-points) measurements.  The bicoherence analysis of

experimental data has often been performed on the temporal Fourier spectrum.  Such

studies have relevance for cases where the condition of the wavenumber matching is

approximately satisfied if the frequency matching condition is fulfilled.   In studies where

only frequency spectrum is used, the effective nonlinear interaction is analyzed, in which

matching conditions of wavenumbers are treated as an average.  Although limited in

accuracy, this simplified data analysis has a relevance in investigating the interactions

between drift waves and zonal flows as a first step.  Considering these experimental

situations, we introduce Fourier components as

   g t = g pexp – iptΣp . (4)

We choose one particular frequency ω  for a test wave   gω .   An imposition of the

test mode   gω  affects the p -Fourier component  g p   via the nonlinear term    N p,ωg p – ωgω .

(Note again that the matching conditions of wavenumbers are included (as an average) in
calculating the nonlinear coupling coefficient    N p,ω .)  A response of  g p  to the imposition

of the nonlinear term   gω  is evaluated as follows [1].  We separate one term    N p,ωg p – ωgω

from the total nonlinear terms    N ggΣ , and express the rest in terms of the nonlinear

damping term and fluctuating force as

   N ggΣ – N p,ωg p – ωgωe– ipt = – νT
′ g + S ′

. (5)

according to the same theoretical argument that is used in deriving Eq.(2).   The response
of  g p  against the imposition of   gω  is written as

    ∂
∂t g p + νT

′ – γ + i L0 – p g p = N pg p – ωgω + Sp
′

. (6)

This process has been employed in statistical theories (see, e.g., [1,2].)   The meaning of
this equation is that, in calculating the dynamics of  g p , the nonlinear effects except

   N p,ωg p – ωgω  are combined into    νT
′ g  and  S ′ .  That is, the LHS of Eq.(6) denotes the
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response of the "dressed mode". Because of a large degrees of freedom of fluctuations

excited in the plasma of interest, we employ the test wave approximation

   νT
′ ∼ νT  (7a)

and 

   S ′ ∼ S . (7b)

The meaning of Eq.(7) is that    N ggΣ  and    N ggΣ – N p,ωg p – ωgωe– ipt  are

approximately equal to each other because of the large numbers of modes are excited in

broad-band turbulence.  The concept of the dressed mode and the validity of the

approximation is discussed in [1].  Equation (6) is solved as

   
g p = exp – ν p t dt′exp ν p t′ N p, ωg p – ωgω

– ∞

t

+ g p , (8a)

and

   
g p = exp – ν p t dt′exp ν p t′ Sp

′

– ∞

t

, (8b)

where     ν p = νT, p – γ p + i L0 – p  with the help of Eq.(7a).  The first term in the RHS of

Eq.(8a) represents the response against the imposition of the test mode, and  g p

represents the response against the noise excitation through nonlinear interaction with

other modes.  (Equation (8b) is a Brownian motion if S  is Gaussian white noise.)

Because Eq.(7b) holds for the broad band turbulence, an approximate relation

   g p
2 ∼ g p

2
(9)

holds.
The integrand    g p – ωgω  in Eq.(8a) loses the coherence as    t – t ′  becomes longer

than the autocorrelation time,    τa, p = min τc, ω, τc, p – ω , where    τc, p  is the

autocorrelation time of the fluctuation    τc, p
– 1 = νT, p – γ p .  By noting this fact, the integral

in Eq.(8a) is evaluated as

   
exp – ν p t dt′exp ν p t′ N p, ωg p – ωgω

– ∞

t

∼ τ p N p, ωg p – ωgω (10)
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with

   
τ p = ν p

– 1 1 – exp – ν p τa, p (11)

That is,

   g p ∼ τ p N p, ωg p – ωgω + g p . (12)

A similar argument applies to    g p – ω , and we have

   g p – ω ∼ τ p – ω N p – ω, ωg pgω
* + g p – ω (13)

where the relation    g– ω
* = gω  is used.

Equations (12) and (13) show the responses of the Fourier  components  g p  and

   g p – ω   against the imposition of the test mode   gω .  The amplitude  g p  is separated into

   τ p N p, ωg p – ωgω  and  g p ; the former is the result of the nonlinear interaction    g p – ωgω ,

and the latter,  g p , is statistically independent from the former.

III. Bicoherence Analysis

The bispectrum estimator    B ω, p , the squared bicoherence    b2 ω, p , and the

summed-bicoherence    b2Σ  are defined as

   B ω, p = g p
*g p – ωgω , (14)

   

b2 ω, p =
B ω, p

2

g pg p – ω
2

gω
2

, (15)

and

   b2Σ ω = b2 ω, pΣp . (16)

We see that this bispectrum estimator is in proportion to the projection of the response  g p

to the nonlinear force    N pgωg p – ω .  Relations between the bicoherence and nonlinear

interactions are discussed in this chapter.
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A. Case of broad band turbulence

We first study the case where fluctuations are composed of broad band spectrum
as is shown in Fig.1(a).  In this case all of three components,  g p ,    g p – ω  and   gω , follow

similar relations like Eqs.(12) and (13).  We have

   gω ∼ τω Nω, pg pg p – ω
* + gω . (17)

From Eqs.(12), (13) and (17), the bicoherence is expressed in terms of the nonlinear

terms.  The derivation is given in the Appendix A and the results are summarized here.

1. Summary of results

Bispectrum indicator

The bicoherence indicator , which is the third order correlation function, is

expressed in terms of the second-order correlation functions and the nonlinear coupling

coefficient  N  as

   B ω, p = τ p N p, ω
* g p – ω

2
gω

2

   + τ p – ω N p – ω, p g p
2 gω

2 + τω Nω, p g p – ω
2

g p
2

. (18)

In order to have more explicit interpretations, we employ an estimate for the RHS of

Eq.(18). Three terms of spectral functions in the RHS of Eq.(18),    g p – ω
2

gω
2

,

   g p
2 gω

2
, and    g p – ω

2
g p

2
, depend on p  and ω  but have similar magnitude

for broad band fluctuations.  One can have simplified evaluation as

   
B ω, p ∼ τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p g p – ω
2

g p
2

. (19)

Squared bicoherence

Substitution of Eq.(19) into Eq.(15) gives the squared bicoherence.  In order to

have comparisons with experimental observations, a crude estimate,

   g p – ω
2

g p
2

gω
2

∼ g p
2

. (20)
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is employed here.  This approximation is employed when   gω ,  g p  and    g p – ω  belongs to

the broad-band spectrum.  As is shown in the Appendix A, the squared bicoherence is

given, with the help of Eq.(20), as

   
b2 p, ω = τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p

2
g p

2
. (21)

If phases between    τ p N p, ω
* ,    τ p – ω N p – ω, p

*  and    τω Nω, p
*  are randomly distributed, one

has

   
τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p

2

   ∼ τ p N p, ω
* 2

+ τ p – ω N p – ω, p
2

+ τω Nω, p
2    ∼ 3 τ p N p, ω

* 2
. (22)

The randomness of phases between    τ p N p, ω
* ,    τ p – ω N p – ω, p

*  and    τω Nω, p
*  are

discussed for the case of drift wave turbulence in §3.3.

Summed bicoherence

Equations (21) and (22) provide the expression for the summed bicoherence

   b2Σ ω ∼ 3 τ p N p, ω
* 2

g p
2Σp ∼ 3 τ p N p, ω

* 2
g 2

, (23)

with

   g 2 = g p
2Σp . (24)

2. Interpretation
Equation (18) shows that the magnitude of    B ω, p  is an indicator of the

nonlinear force.  The bispectrum estimator is composed of the terms which are
proportional to the projection of the nonlinear term    g p – ωgω  onto the response of   g p  to

the nonlinear force    N p, ωg p – ωgω .  Thus, the bispectrum indicator provides the

evaluation of nonlinear interaction in observed data.  The squared bicoherence shows the

magnitude of the three-mode interaction.

In addition, Eq.(19) shows that the phase of    B ω, p , the biphase, is directly

related to the phase of the nonlinear coefficient    N p, ω
* .  The biphase indicates the phase of

   τ p N p, ω
* .  That is, the biphase shows the relation between the nonlinear force and the
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test mode.  Thus, the magnitude as well as the biphase give information about aspects of

the nonlinear interactions.  For instance, the measurement of the phase of    B ω, p  gives

the phase of  N   once the real frequency and the decorrelation rate are measured.

The interpretation of Eq.(23) is as follows.  The term    N p, ω g  represents a

nonlinear force (in a normalized unit in a dimension of the 'frequency'), and
   τ p N p, ω g  indicates the competition between this nonlinear force and the effective

correlation time   τ p .  Equation (23) is rewritten as

   N p, ω ∼ 1
3τ p g

b2Σ ω . (25)

The RHS is composed of three terms,  g ,   τ p  and    b2Σ ω .  The fluctuation level  g

is measurable, and the correlation time   τ p  is evaluated by the autocorrelation time    τc, p ,

which is measured from fluctuation data.   Thus, once the summed bicoherence
   b2Σ ω  is measured, the magnitude of the nonlinear coupling coefficient    N p, ω  is

evaluated.

B. Case of a sharp peak within a broad band fluctuations

When the drift wave fluctuations coexist with the mesoscale fluctuation, such as

zonal flow or geodesic acoustic modes (GAMs), the interaction between the modes in the
sharp peak and broad band fluctuations attracts attentions.  Here, the suffix ω  indicates

the mode which belongs to the sharp peak of the spectrum, and    p, p – ω  denotes the

broad band background turbulence.  (See Fig.1(b).)  The test mode in a sharp peak is
denoted by ω  here.

1. Response of a test mode

The amplitude of the modes in a sharp peak is considered to be strongly

influenced by a self-nonlinear interaction, not solely determined by the fluctuating force

from broad band turbulence.  In the case of zonal flow dynamics, the negative eddy-

viscosity-like effect by the drift wave turbulence destabilizes the zonal flows, contrary to

the case of drift waves for which Eq.(2) is used.   Self-interaction is effective for the

saturation of the zonal flow [6].  We introduce the amplitude of the sharp spectral mode,
   gω, 0 , which is assumed to be determined by the self-nonlinear effects and by the

excitation by turbulence force    Ngqgq – ω
*Σq ≠ p

 (i.e., the    g pg p – ω
*  term is subtracted).

Imposing the nonlinear interaction term     g pg p – ω
*  on the test mode, and one has the

response of   gω  after the similar procedure that gives Eq.(12).  Thus,
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   gω ∼ τω Nω, pg pg p – ω
* + gω, 0 , (26)

where the first term in the RHS represents the response against the beat interaction
   Nω, pg pg p – ω

* , and  τω  is calculated after Eq.(11).  The autocorrelation time of the test

mode    τc, ω  is much longer than those of background turbulence,    τc, p – ω , so that  τω  in

Eq.(26) is replaced by the autocorrelation time of background fluctuations    τc, p – ω .  That

is, one has an expression

   gω ∼ τc, p – ω Nω, pg pg p – ω
* + gω, 0 . (27)

In other words,   gω  is composed of a component    gω, 0  (which is independent of

   g pg p – ω
* ) and a fluctuating component owing to the kick    g pg p – ω

* .

2. Bicoherence

The bicoherence is given from Eqs.(12), (13) and (27) as is explained in the

Appendix B.  The result is summarized here.

Bicoherence indicator

The Bicoherence indicator is evaluated as

   
B ω, p = g p

*g p – ωgω = τ p N p, ω
* g p – ω

2
+ τ p – ω N p – ω, p g p

2 gω, 0
2

   + τc, p – ω Nω, p g p – ω
2

g p
2

. (28)

The first term (with parenthesis) in the RHS of Eq.(28) is due to the modulation of the

background fluctuation by the imposition of the test mode (e. g., zonal flow).  The last

term in the RHS comes from the influence on the test mode by back-ground fluctuations.
As is explained in the next section, the phases of    τ p N p, ω

*  and    τ p – ω N p – ω, p  are close

to each other for the interaction between the zonal flow and drift wave fluctuations [6].

Based on the estimate    τ p N p, ω
* g p – ω

2 ∼ τ p – ω N p – ω, p g p
2

 for components    g p – ω

and  g p , which belong to the broad-band spectrum, a simplified form of B  may be used

for convenience as

   B ω, p ∼ 2τ p – ω N p – ω, p
* g p

2 gω, 0
2 + τc, p – ω Nω, p g p – ω

2
g p

2
   (29)
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The term which is proportional to    gω, 0
2

 in the Bicoherence indicator has been pointed

out in [15].  The second term is the contribution of the broad band turbulence, and
   B ω, p  at ω  does not vanish even in the limit of    gω, 0

2 → 0 .

The squared bicoherence

A simplified expression for the squared bicoherence is given in Appendix B as

        b2 ω, p ∼ 4τ p – ω
2 N p – ω, p

2
gω, 0

2 + 4τ p – ωτc, p – ω Re N p – ω, pNω, p
* g p

2

   + τc, p – ω Nω, p
2

g p – ω
2

g p
2 gω

2 – 1
. (30)

In obtaining Eq.(30), the approximate relations 
   g pg p – ω

2
∼ g p – ω

2
g p

2
 and

   g p – ω
2 ∼ g p

2
 are used, because    g p – ω  and  g p  belong to the  broad-band

spectrum.  In addition,    gω, 0
2∼ gω

2
 is employed as is in Eq.(9).

Summed bicoherence

The summed bicoherence coefficient is then expressed as

        b2Σ ω = 4 M τ p – ω
2 N p – ω, p

2
gω

2 + 4τ p – ωτc, p – ω Re N p – ω, pNω, p
* g 2

   + ∆gω
2 gω

2 – 1
, (31)

where  M  is the number of Fourier component,    M = 1Σp , the over-bar  is an average

over the Fourier component,    M τ p – ω
2 N p – ω, p

2
= τ p – ω

2 N p – ω, p
2Σ ,   g2  is the

level of background turbulence as is given in Eq.(24), and    ∆gω
2  is the variance of the

amplitude of   gω , owing to the kicks from background fluctuations,

   τc, p – ω Nω, p
2

g p – ω
2

g p
2Σp = ∆gω

2 . (32)

(Note that the variation    ∆gω
2  is defined in a time scale which is longer than    τc, p  but is

shorter than the time scale that    gω, 0  varies.)

3. Interpretation
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It should be emphasized that the phase of the Bicoherence indicator    B ω, p  in

Eq.(29) can be different from that for the case of broad-band turbulence.  For instance,

when ω  is chosen to be the frequency of zonal flows (zonal flow, GAMs), the phase of

the    B ω, p  weakly depends on p .  This is particularly noticeable when one study the

coupling between the drift wave and zonal flows.

The result Eq.(31) is interpreted as follows.  (i) First, the summed bicoherence
   b2Σ ω  has a sharp and broad components: The first term in the RHS indicates a peak

in the summed bicoherence, and the second and third terms a broad distribution in a wide

frequency region.  That is, the peak in the summed bicoherence appears at the peak of the

power spectrum.  (ii) Second, the magnitude of the peak in the summed bicoherence is in

proportion to the magnitude of the mode, the nonlinear interaction coefficient,
   N p – ω, p

2
, the autocorrelation time of the background fluctuations, and by the number

of Fourier components,  M , which are used in the data analysis.  The first term in the

RHS of Eq.(31), which comes from the modulation of background drift wave
fluctuations by imposed zonal flows, is proportional to  M .  This is because the majority

of the drift waves responds to the imposed quasi-coherent oscillation in a similar way.

As a result of this, the summed bicoherence becomes larger as the number of Fourier

components increases.  (iii) Third, the detection this first term of Eq.(31) is possible, in

the data analysis, as follows:  When the peak in the summed bicoherence    b2Σ ω  is

obtained, (a) the dependence of    b2Σ ω  on the amplitude of the sharp mode    gω
2

must be studied, and (b)  the peak height of    b2Σ ω  must be investigated by observing

the effects of the choice of  M .   (iv) Fourth, the second term is the contribution of the

broad band fluctuations, and is given by the same response as Eq.(23).  The difference in

the numerical coefficients 3 and 4 is due to (i) the difference in the number of

combinations, and to (ii) the difference in the phase difference among nonlinear

coefficients.  (v) Fifth, the last term is a small correction, when the self-nonlinear effects
for   gω  is strong.

Some further comment may be made on the peak of the summed bicoherence.

When the peak is apparent in    b2Σ ω , it is approximated as

   b2Σ ω ∼ 4 M τ p – ω
2 N p – ω, p

2
gω

2
(33)

in the vicinity of the peak of    b2Σ ω .  The Fourier decomposition is usually made as

discretizing the frequency rage as    p = n∆ω , where  ∆ω  is the width of the frequency,

and    n = 0 ± 1, ± 2, ⋅ ⋅ ⋅ ± M .  When the half-width of the test mode at frequency ω  is

narrower than  ∆ω , then the peak in the Fourier series    gω
2

  does not depend on the
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choice of  ∆ω .  In this case, if one performs a convergence study such as increasing  M

and decreasing  ∆ω , the peak value of    b2Σ ω  is in proportion to  M .  If  ∆ω  is smaller

than the half-width of the test mode, then    M gω
2

 converges to a finite number.  Then

   b2Σ ω  also converges.

Equation (33) shows that the magnitude of the nonlinear coefficient  N  is

measured by observing the total bicoherence    b2Σ ω  together with the spectral

variables    gω
2

 and   τ p .  The information of the phase of  N  is also obtained from the

biphase.

IV. Explicit Forms

An example is discussed for drift wave fluctuations.  A normalized electrostatic

potential

   n ≡ n
n0

Ln
ρs

, 
   

φ ≡
e φ
Te

Ln
ρs

(34)

is introduced, where n  is the density perturbation,   n0  is the average density, φ  is the

electrostatic potential fluctuation,  
ρs  is the ion gyroradius at electron temperature, and  Ln

is the density gradient scale length.  (The normalized variables n  and φ  are of the order

unity in a stationary drift wave turbulence [1].)   The Hasegawa-Mima model gives the

response of drift wave in the presence of zonal flow (pure zonal flow or GAMs) as [7]

   ∂
∂tφd +

iω*

1 + k⊥
2ρs

2
φd –

csρs
4

Ln
φd, ∆⊥φd =

cs
Ln

qxk yk⊥
2ρs

4

1 + k⊥
2ρs

2
φZφd , (35)

where the suffix d and z indicate drift waves and zonal flow, respectively,  qx  is the radial

wavenumber of zonal flow, and k  denotes the wavevector of drift waves.  The second

and third terms in the LHS of Eq.(35) stand for the linear response and nonlinear self-

interaction of drift waves, respectively.  The RHS represents the coupling between the

zonal flow and drift waves.

The interaction of drift waves has the coupling coefficient

   
N ∼

cs
Ln

k xk yk⊥
2ρs

4

1 + k⊥
2ρs

2 . (36)

This coefficient has a magnitude like
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N ∼

cs
2Ln

k⊥
4ρs

4

1 + k⊥
2ρs

2 . (37)

It should be noticed that the phase of Eq.(36) can take a value in a wide range.  This is
because the sign of the wave number in the poloidal direction  k y  is determined by the

diamagnetic drift direction, but the wave number in the radial direction  k x  can have a

wide variety (including complex values) for drift waves.  The interaction between the

zonal flow and drift waves has the coefficient

   
N =

cs
Ln

qxk yk⊥
2ρs

4

1 + k⊥
2ρs

2 . (38)

In this form, one sees that  k x  is not included and is replaced by  qx .  The sign of  k y  is

dominated by the propagation of drift waves relative to the diamagnetic drift velocity.
Therefore, the coefficient  N  keeps a same phase for components of drift wave

fluctuations.

The decorrelation time of drift waves through self-nonlinear interaction has been

evaluated as

   τ p
– 1 ∼ h k⊥ρs ω*φ , (39)

in the strong turbulence limit, where    h k⊥ρs  stands for a numerical coefficient of the

order of unity.  For the case of Eq.(23), one has

   
b2Σ ω ∼ 3 1

h k⊥ρs

k xk⊥
2ρs

3

1 + k⊥
2ρs

2

2

. (40)

That is, the summed bicoherence has a weak dependence on the drift wave amplitude so
long as the wavenumbers are unaltered.  Equation (36) shows that the biphase of B

spreads over the range of 0 and   2π .

In the case of the GAMs and drift waves, Eqs.(31) and (38) gives the expression

for Eq.(31) (where the first and second terms are kept) as

   
b2Σ ω ∼ 4M 1

h k⊥ρs

qxk⊥
2ρs

3

1 + k⊥
2ρs

2

2
φZ

2

φd
2 + 4 1

h k⊥ρs

k xk⊥
2ρs

3

1 + k⊥
2ρs

2

2

, (41)
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so long as the frequency width for decomposing the Fourier series is wider than the half
width of the GAMs peak.  The wavenumber  qx  for zonal flows is smaller than  k x  for

drift waves.  However, the dependence on  M  possibly gives a larger value of the

summed bicoherence.   From Eqs.(40) and (41), the total bicoherence at the frequency of

zonal flows and that at the drift wave range of frequencies are compared as

   b2Σ GAMs

b2Σ drift
∼ 4M

3
qx
k x

2φZ
2

φd
2 + 4

3 . (42)

It is also noted that the total bicoherence of Eq.(41) is dependent on the local gradient of

the zonal flow,    qx = φZ
– 1 ∇φZ .

It is also useful to compare Eq.(42) with the estimate of the theory.  In the

predator-prey model, one has the ratio of the zonal flow amplitude and the fluctuation

amplitude of drift waves as

   φZ
2

φd
2 =

k x
qx

4 γL – γnd
γdamp

. (43)

where   γL  and   γnd  are the linear growth rate and nonlinear damping rate (via drift wave-
drift wave interactions) of drift waves, respectively, and   γdamp  is the (collisional)

damping rate of zonal flow.  (See section 2 of [6] for more details.)  Substituting Eq.(43)

into Eq.(42), one has

   b2Σ GAMs

b2Σ drift
∼ 4M

3
k x
qx

2 γL – γnd
γdamp

+ 4
3 . (44)

The zonal flow is excited when    γL > γdamp  holds, so that the first term on the RHS is

usually much greater than unity when the zonal flows are excited.

V. Summary

In this article, we discussed the bicoherence spectrum for drift wave turbulence in

strongly magnetized plasma.  The case without zonal flows and that with zonal flows

were analyzed.  In the presence of a broad band turbulence, the nonlinear interactions are

theoretically formulated in a form of the Langevin equation, and the bicoherence spectrum

was shown to indicates the projection of the nonlinear force onto the test mode.  Based on

this formalism, the magnitude of bispectrum was investigated for the drift wave -zonal

flow systems.  It was shown that the total bicoherence for the zonal flows (zonal flow
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and GAMs) increases as the amplitude of the zonal flows increase.  Comparison between

the bispectral data for zonal flows and for drift waves were also given.  These findings

generalized the result in ref. [15].

Explicit formula for bispectrum are summarized in the text, such as Eqs.(19),

(21), and (23) for the interaction of broad-band fluctuations, and Eqs.(29) and (31) for

the interaction of a sharp peak with broad band fluctuations.  In these expressions, the

bicoherence is expressed in terms of the coefficient of the nonlinear interaction and

quantities which are given by quadratic spectral functions.  Therefore, by measuring the

fluctuation spectrum, autocorrelation time, and bispectral functions, the nonlinear

interaction of each three-wave coupling is quantitatively estimated from experimental data.

Thus, the study of bicoherence will provide a fruitful understanding of nonlinear

interactions in turbulent plasmas.

It might be useful to add a few comment on the statistical variance, which is

caused by finite number of realizations.  The statistical error for the bicoherence indicator

is estimated as

   ε ∼ 1
NR

g p
3

(45)

where  g p  is a typical value of Fourier amplitude in the broad band spectrum and  NR  is

the number of realizations employed in the analysis.  The variance for the total

bicoherence is given as

   εb = M
NR

(46)

where  M  is the number of Fourier components.  In order to have a statistically-

admissible estimates, the bicoherence indicator and total bicoherence must be larger than

Eq.(45) and Eq.(46), respectively.  Equations (40) and (41), combined with Eq.(46),
provide the necessary number of realizations  NR .

By observing the dependence of the total bicoherence on the amplitude of zonal

flows, one can directly measure the nonlinear interaction of zonal flows and background

drift waves directly.  The dependence on the number of Fourier component was also

clarified.  The other issue is the phase of the bispectrum estimator.   The importance of

observing the biphase was also demonstrated.  When ω  is chosen at the frequency of

zonal flows, the phase of the bispectrum estimator    B ω, p  has a weak dependence on

p .   These properties will be used in the experimental study of turbulence [24].  It should

be noticed that in the regime of the Dimits upshift, where the majority of fluctuation

energy is converted into the zonal flows, the ratio Eq.(44) becomes very large.
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It should be noted that the analysis in this article is valid for cases where the

condition of the wavenumber matching is approximately satisfied if the frequency

matching condition is fulfilled.   This means that the coefficient of nonlinear interaction
   N p, ω  is an effective value, in which averaging over the wavenumber space is included.

Experimental estimates of    N p, ω , e.g., Eqs.(25) or (33) provide effective values.  This

shortcoming is due to limitations that only few-points measurements are usually available.

It is necessary to measure the space-time Fourier decomposition, e. g., a power spectrum
   I k, ω  and more complete bicoherence studies are necessary in order to establish better

understanding of the system of drift waves and zonal flows.

The result in this article is limited to a single-field model, and the crossphases
between multiple fluctuating fields (e.g., n , φ , T , etc.) are not considered.  This

simplification is relevant as the first step, because the    vv ⋅ ∇vv  nonlinearity has the

essential role in the interaction of the drift wave and zonal flow.  The result here is applied

to the study of coupling between the zonal flow and drift waves.  Nevertheless, the other
nonlinear interactions (e.g.,     vv ⋅ ∇ p  and other nonlinear terms) can also be influential in

quantitative determination of the turbulence level.  Experimental studies on cross

bicoherence analysis may be possible in near future, and theoretical interpretation for

them is required as well.  Such analysis on multiple fields is left for future studies.  It is

noted that one point measurement has limitation in measuring the absolute value of
nonlinear interactions.  When the coherence lengths of triplet modes  g p ,    g p – ω  and   gω

are different, additional care is necessary.
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Appendix A  Bicoherence in a case of broad band turbulence

We first study the case where fluctuations are composed of broad band spectrum
as is shown in Fig.1(a).  For this case, the triplet average of three components,  g p ,

   g p – ω  and   gω  is discussed in this appendix.  From Eqs.(12), (13) and (17), one has

   g p
*g p – ωgω = g p

*g p – ωgω + τ p N p, ω
* g p – ωgωg p – ω

* gω
*

   + τ p – ω N p – ω, pg pgω
* g p

*gω + τω Nω, pg p – ω
* g p

*g pg p – ω . (A1)
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In the lowest order of    τ p N p, ω
* , one has    gqgq

* ∼ gq
2

 (for    q = p, ω, p – ω ), so that

Eq.(A1) is rewritten as

   g p
*g p – ωgω = g p

*g p – ωgω + τ p N p, ω
* g p – ω

2
gω

2

   + τ p – ω N p – ω, p g p
2 gω

2 + τω Nω, p g p – ω
2

g p
2

(A2)

in the lowest order of    τ p N p, ω
* .  The first term is mutually uncorrelated,

   g p
*g p – ωgω = 0 , (A3)

in the limit where S  is taken as a noise [2,22].  One has

   B ω, q =    g p
*g p – ωgω = τ p N p, ω

* g p – ω
2

gω
2

   + τ p – ω N p – ω, p g p
2 gω

2 + τω Nω, p g p – ω
2

g p
2

. (A4)

In order to have more explicit interpretations, we employ an estimate for the RHS

of Eq.(A4). Three terms of spectral functions in the RHS of Eq.(A4),    g p – ω
2

gω
2

,

   g p
2 gω

2
, and    g p – ω

2
g p

2
, depend on p  and ω  but have similar magnitude

for broad band fluctuations.  One can have simplified evaluation as

   
B ω, q ∼ τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p g p – ω
2

g p
2

.  (A5)

The squared bicoherence is defined as Eq.(15).  Substitution of Eq.(A5) into

Eq.(15) gives

   

b2 =

τ p N p, ω
* + τ p – ω N p – ω, p + τω Nω, p

2
g p – ω

2
g p

2

gω
2

. (A6)

A crude estimate,
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   g p – ω
2

g p
2

gω
2

∼ g p
2

. (A7)

is employed here, because all of    g p – ω ,  g p  and   gω  belong to the broad-band spectrum.

This allows direct comparisons with experimental observations.  This approximation

gives

   
b2 p, ω = τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p

2
g p

2
. (A8)

If phases between    τ p N p, ω
* ,    τ p – ω N p – ω, p

*  and    τω Nω, p
*  are randomly distributed, one

has

   
τ p N p, ω

* + τ p – ω N p – ω, p + τω Nω, p

2

   ∼ τ p N p, ω
* 2

+ τ p – ω N p – ω, p
2

+ τω Nω, p
2    ∼ 3 τ p N p, ω

* 2
. (A9)

The summed-bicoherence    b2Σ  is defined as Eq.(16).  Equations (A8) and (A9)

provide the relation

   b2Σ ω ∼ 3 τ p N p, ω
* 2

g p
2Σp ∼ 3 τ p N p, ω

* 2
g 2

, (A10)

with    g 2 = g p
2Σp .

Appendix B  Bicoherence in a case of a sharp peak within a broad band

turbulence

The triplet product is given from Eqs.(12), (13) and (27) as

   g p
*g p – ωgω = g p

*g p – ωgω, 0 + τ p N p, ω
* g p – ω

2
gω, 0

2

   + τ p – ω N p – ω, p g p
2 gω, 0

2 + τc, p – ω Nω, p g p – ω
2

g p
2

. (B1)

where the relation    gqgq
* ∼ gq

2
 is also used.  The average of the first term

   g p
*g p – ωgω, 0  is considered to vanish because   g p

*  and    g p – ω  are responses to
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independent noises.  Thus one has the evaluation of the Bicoherence indicator by use of

the lowest-order correlation as

   
B ω, p = g p

*g p – ωgω = τ p N p, ω
* g p – ω

2
+ τ p – ω N p – ω, p g p

2 gω, 0
2

   + τc, p – ω Nω, p g p – ω
2

g p
2

. (B2)

The first term (with parenthesis) in the RHS of Eq.(B2) is due to the modulation of the

background fluctuation by the imposition of the test mode (e. g., zonal flow), and the last

term in the RHS comes from the influence on the test mode by back-ground fluctuations.
As is explained in §III, the phases of    τ p N p, ω

*  and    τ p – ω N p – ω, p
*  are common for the

interaction between the zonal flow and drift wave fluctuations.  Based on the estimate
   τ p N p, ω

* g p – ω
2 ∼ τ p – ω N p – ω, p

* g p
2

, a simplified form of B  may be used for

convenience as

   B ω, p ∼ 2τ p – ω N p – ω, p
* g p

2 gω, 0
2 + τc, p – ω Nω, p g p – ω

2
g p

2
     (B3)

The term which is proportional to    gω, 0
2

 in the Bicoherence indicator has been pointed

out in [15].  The second term is the contribution of the broad band turbulence, and
   B ω, p  at ω  does not vanish even in the limit of    gω, 0

2 → 0 .

The squared bicoherence is calculated from Eq.(B3) as

   
b2 ω, p =

4τ p – ω
2 N p – ω, p

2
g p

4 gω, 0
4

g pg p – ω
2

gω
2

   

+
4τ p – ωτc, p – ω Re N p – ω, pNω, p

* g p – ω
2

g p
4 gω, 0

2

g pg p – ω
2

gω
2

   

+
τc, p – ω Nω, p

* 2
g p – ω

4
g p

4

g pg p – ω
2

gω
2

(B4)

For further transparency of argument, the approximate relations
   g pg p – ω

2
∼ g p – ω

2
g p

2
 and    g p – ω

2 ∼ g p
2

 are used, because    g p – ω

and  g p  belong to the  broad-band spectrum.  In addition, an approximation
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   gω, 0
2∼ gω

2
 is employed as is in Eq.(9).  By the help of these approximations, the

first term in Eq.(B4) is estimated as

   4τ p – ω
2 N p – ω, p

2
g p

4 gω, 0
4

g pg p – ω
2

gω
2

∼ 4τ p – ω
2 N p – ω, p

2
gω, 0

2
, (B5)

and is dependent only weakly on the choice of p .  The second term in Eq.(B4) may be

approximated as

   4τ p – ωτc, p – ω Re N p – ω, pNω, p
* g p – ω

2
g p

4 gω, 0
2

g pg p – ω
2

gω
2

   ∼ 4τ p – ωτc, p – ω Re N p – ω, pNω, p
* g p

2
. (B6)

The last term in Eq.(B4) is rewritten as

   τc, p – ω Nω, p
2

g p – ω
2

g p
2

gω
2

. (B7)

Thus, simplified expressions for the squared bicoherence and total bicoherence are given

as Eqs.(30) and (31).
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Fig .1

(a) (b)

frequency

g(ω)
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g(ω)
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Fig.1  Schematic drawing of the spectrum.  A broad band spectrum (a) and that with a

shahp peak (b).




