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Abstract
Coupled cscillation of the radial electric field, the
heating power and the plasma temperature in helical systems is
apalysed. This oscillation is caused by the influence of the
radial electric field on the direct loss of injected fast ions.
The damped oscillations of the radial electric filed, temperature
and fast-ion loss are predicted. Conditions for the mode and

the dependence of the frequency are discussed.
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Recently the important role of the radial electric field on
the confinement of the toroidal plasma is widely recognized.
This is especially true for the plasmas in the toroidal helical
devices such as torsatron/heliotron. This is because the
trajectory of the helically trapped particles is strongly
influenced by the radial potential difference which is of the
order of the plasma temperature. Detailed work has been
performed, specifying the magnetic configurations, on the motion
of particles under the given electric field[l,2]. Recent
progress has been focused on understanding the influence of the
particle loss on the establishment of the radial electric field,
including the analysis of the selfconsistent treatment of the
radial electric field and the loss cone loss[8-5]. Majority of
these selfconsistent analyses for helical plasmas, however, have
been limited to the problems of the stationary solutions., The
study on the dynamics, which is originated from the mutual
influences between the loss cone loss and the electric fieid, has
been studied associated with the H-pode physics in tokamaks[6],
and requires further efforts. Oscillations of the loss of the
fast ions has been reported on Heliotron-E device experimentally
by Zushi and coworkers{7]. This phenomena, which we call the
Zushi-oscillation, casts a strong motivation for the
investigations. This is because the passible stationary operation
is considered to be one of the main advantage of helical systems
in proceeding to the future step of the fusion research.

In this article, we report the analytic study on the

dynamics of the coupling between the radial electric field,




plasma temperature, and lioss cone loss im helical plasmas, and
show the existence of the damped oscillations. The analysis is
limited to the point model, simplifying the transport problems, in
order to show the gqualitative nature of the possible thermal and

electric oscillations in helical plasmas.

We study the plasmas heated by the neutral beam injection
with the injection emergy ¥,. The loss cone boundary is a
functional of the potential profile, Owing to this relation, the
heating power couples to the plasma potential., The heating power
dictates the evolution of the plasma temperature. At the same
time, the plasma temperature strongly influences the plasma
potential, This closes a link, in helical plasmas, between the
plasma temperature profile and radial electric field through the
loss cone loss of injected fast ions. ¥We, in the following, study
the dynamics of this link of processes, showing the possible
oscillations. {The plasma density is influential on the radial
electric field as well. However, in order to keep the simplicity
and clarity of the argument, we here neglect the coupling with
the evolution of the density profile.)

The relation of the radial electric field and plasma
temperature has been studied in helical systems. TFor the NBI

heated plasmas, & simple formula,

B, = by /e +sE, (D

works for the wide range of parameters[4], where the coefficient



hi is the neoclassical coefficient (close to 8.5). The term &F
is the contribution of the direct loss of fast ions. The

expression for 6E is given as[3, 4]
ﬁE o -Tb[afi/aﬁr]_l, (2)

where Fb is the particle flux of fast ions, and Fi is that of the
bulk ions. TFor the parameters of the plasma in present

experiments, we have
ari/aEr = eDin/T (3)

where Di is the neoclassical ion diffusivity, n is the plasma
density, and we take Ti = Te = T for the simplicity. Integrating
8E., we have the contribution of the change 8E to the potential

difference, 6&¢, as
-ebd = Alayer(T/Din)an (4)

where Alayer 1s the thickness of the lavyer where 8E has a
substantial contribution. Noting the relation that Fb =
Ploss/(4ﬂzagwloss)’ where Ploss is the loss power associated with
the loss cone loss, 2 and R are minor and major radii,
respectively, and wloss 1s the typical energy of loss ions, we

have




A T
layer
ebd ~ Ploss (5)

2
inm aRDin Wloss

Summarizing Egs. (1) and (5), the potential difference between the

center and edge, ¢ is given as

T(a)

Ploss

W1oss Pin

The negative value of ¢ indicates that Er is negative, i.e., the
static potential is lower at the axis. In Eq.(8), fl is a
pumerical coefficient defined by aAlayern/ZtEDin(a), tEis the
energy confirement time, n is the average density. The value T*
is the averaged temperature, which would be realized in the

absence of the direct loss, given as
AT, = 7pP; /2nlalR, (7

and P, 1is the total injection power.

The loss cone boundary has been given in literatures(l.2].
Figure 1 illustrates the region of loss cone for the particles
injected perpendicular to the magnetic field. In the case of the

negative E which we consider here, the loss cone region for the

r:

deeply trapped particles penetrates in the the core region for a

particular energy range as Wz < ¥ < Wl (21,



el${a) - o{r)}
W1 = 2 (8‘1)
ah(1~x ) - st(1+x)
and
e{¢(a) - o(r)}
WZ = 2 (8'2)
sh(1~x )+ et(l-x)

where &y and g, are the helical and toroidal magnetic ripple at
the plasma edge, respectively, and x = r/a,

The energy range of the loss cone region at the magnetic
axis, for present experimental parameters, lies between the
injected energy and the bulk plasma temperature. (When the
heating power is extremely high, the radial electric field would
be so high that all the icns are trapped by the ExB rotation, and
loss cone disappears for the injected fast ions. )

For the simplicity, we consider the case where the deposi-
tion of the fast ions are localized at the center with the
specific injection angle of the helically trapped particles.
(The extension for the case of the diffused deposition and for
the case of the mixed injection angles is straightforward.) The

boundary for the loss cone is given as Wloss = WICG), i.e.,

H].DSS = 'ed’/(sh'at) (9)

This relation holds for the general profile of the static

potential for the case of E.<0 [2]. When the condition Wloss<wb




holds, as is the case of present experiments, the heating by the
fast ions takes place during the slowing down process from the
energy Wb to WIOSS‘ Therefore the power which is used for the

plasma heating, Pheat’ is given as

Preat = (1-¥1058/Wp)Pyy (16)

The relation Py oot Pheat = Pip ©eans the energy conservation
relation, Figure 2 illustrates the relation of the heating power
as the function of the plasma temperature.

Since the bulk plasma heating occurs through the slowing
down process of fast ions, there is a time delay between the
deposited power and the power transferred to bulk plasma. The

time evolution of the power which causes the temporal change of

the plasma temperature per unit volume, P, is simply modelled as
aP/at = (Pheatlvp - P)/fheat (l])

where Theat is the typical slowing down fime and Vp is the plasma

volune.

The evelution of the plasma temperature is given by the

energy transporit equation

al/at = (P/n - T)/zy. (12)

Equations (11) and (12) with equations (6), (9) ard (10)

constitute the set of basic eguations.



~

We take the normalized form f = T/Wb, P = rEP/nWb, and 7

t/rp. Equations (8) and (9)-(12) are rewritten as

3
s B
I
s B

al/ ar (13-1)

aP/az = &([1-CT-C;P, T(a)1P, - P ) (13-2)

where ¢ = TE/Theat, Pin=rEPin/nvab' T(a)=T(a)/Wb. and C and C1

are coefficients defined as

T(0) 1
C = hl""_

(14)

and C; - Cfl/hi' For the torsatron/ heliotron configuration,
such as Heliotrom E and CHS, the term in Eq.(6), which is in
proportion to f;, has only a small contribution. We therefore
neglect this term here,

Under the condition of our interest corresponding to the
experimental conditions, which is shown in Fig.1, the equation

(13) has one fixed point., The stationmary solution is given as
T =P = PO = Pin/(1+CPin) (15)
The stability of the trajectory near this fixed point is studied

by expanding % and § near ﬁO as i = ﬁO + x and § = ﬁO + v. The

linearized equation is given as




ax/ a8t -1 1 X

= (186)
ay/ar -6C§0 -4 y

by assuming that T(r) profile is fixed, ¥riting the time

dependence as (x,5) ~ (xo,yo)exp(kr), we have

A= -(1+6)/2 /?1—6)2/4—6C§in (17

This result shows that the oscillation around the statiomary

solution is possible if the condition
5 N2
4GCPin > (1-6) (18)

is satisfied. This relation is more easily satisfied for the
case that the slowing down time is close to the energy
confinement time, 6 = 1, or the case of large C (i.e., &, is
closer to ah). Since the real part of the eigenvalue A is always
negative, the oscillation is a damped oscillaticn. The

oscillation is more clearly seen if |Ima| > |RBer|, or

CP. > 1 (19)
In this case, the oscillation frequency, |Jm a/zpl|, is approxi-
mately proportional to vP; /Tpe.ys- If. Bq. (19) is not satisfied,

the damping rate is comparable to or larger than the oscillation

frequency, and the oscillation would not be observed.



From Eq.(18), we see that the oscillation is possible only
if zp and Tyeat 18 finite, The oscillation requires the
relaxations both in the real space and the velocity space.

The ratio between the amplitudes of oscillatiocm of the
temperature and the heating power can be also obtained. From
Eq. (8), we see that the potential difference is hiT(U)/T times
larger than the variation of the average temperature. This is
also the case for the heating power. Substituting the eigenvalue
Eq. (17) in to Eq.(16), we have the ratio between y and x, i.e.,

yg/xo, is given by

v9/%g = (6-1)/2  /(1-0)2/4-CP. (20)

For the case that the oscillation can be observed, i.e., Eq. (19)
holds and 6=1, y is larger than x. This implies that the
variation of the ion loss is more prominent than the change of

the temperature.

In summary, the analytic theory of the thermal and electric
oscillation in helical plasma is developed. The existence of the
coupled oscillations of (T, Er ¥ioss Preat). caused by the
coupling of the loss come loss with the radial electric field, is
predicted. This newly predicted coupled oscillation is found to
be stable. This suggests that the oscillations appear as the
postcursor to the sudden and large amplitude change of
temperature change (such as the internal disruption). This is

consistent with what Zushi and coworkers have observed on

10




Heliotron E. It is also noted, from Egq.(20), that the temporal
variation is more prominent for the loss cone loss than for the
plasma temperature. This explains one of the characteristics of
the observed Zushi-oscillation, that the oscillation is prominent
in the loss of energetic icns. The dependence of the oscillation
frequency is derived, which is different from those in the
conventional relaxation process of the pressure driven modes. If
the relations 7y, © 19 apd T = P, ¥ hold, then the frequency
is proportional to Pin1/2~3u/4. The frequeacy is higher for
higher heating power in the L-mode plasmas.

¥hen heating power is extremely high so that By < Wz holds,
or

TEPin , 1 Eh+8t

(21
anWb C €y " &4

the radial electric field would be so high that all the injected
ions are trapped by the ExB rotation, and loss cone disappears
for the fast 1ons. The extrapolation of this theory to the
general injection angle would be straight forward. The variety
in phenomena would be expected.

This oscillation requires both the time delays, i.e.. real
and velocity space diffusion, The analysis in this nocte is
limited to the point model, which simplifies the diffusion
process much. The study including the radial profiles, which
would be necessary for the quantitative compariscn with the Zushi-

oscillation, is left for the future study.
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Figure Captions

Fig.! Loss cone region of the perpendicularly injected fast
ions in torsatron/heliotron configuration. The initial
energy Wb and the energy at the loss boundaries, Wl and Wz,

are also noted,

Fig.2 Heating efficiency, Pheat/Pi,  and the normalized loss
power of the energy transport, nTVp/rEPin (dashed line), are
plotted as a function of the temperature for the perpen-
dicular injection. The crossing of two lines gives the
stationary sclution. ¥When the temperature is very high and
W2(0) > Wy holds, then the injected fast ions are confined
by the ExB rotation, and the heating efficiency increases

again,
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Fig.2
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