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Abstract

Analytie formula is derived for the loss cone in the toroidal
helical systems. Particular emphasis is put on the loss region
for the particles which are barely trapped in the helical
ripples. Effects of the radial electric field and shifts of the
magnetic axis are discussed., Loss region is shown to be mueh

wider than the evaluation given for the deeply trapped particles.



§1. Introduction

The evaluation of the loss cone in toroidal helical systems
is inevitable in studying the potential applicability for the
reaetori'lo). The loss cone problem would be serious for the
alpha particles which are generated by nuclear fusion reaction.
The absolute trapping of particle has attracted wide attentions
recently?_ll). This is partly because the system with low toroidal
pitch number m, which is usually considered to have wide loss
cone, has been shown to have high MHD g 1imit.12—14} The study
on the particle trapping has also been f{lourished because the
method of improvements such as the shift of toroidal axis have
been proposed. It has also been pointed out long time that the
radial electric field has also considerable effect on the

3),

particle trapping Lots of ecalculation has been performed,

particularly for the g=2 torsatron/helical-heliotron configu-
rationsls), to identify the loss region in the velocity as well
as the real spaces. (§ is the multipolarity of the field.) An
analytic formula of the loss region has been derived in the
presence of the radial electrie field for the deeply trapped

particlesg).

The formula has been applied to evaluate the consis-
tent radial electric field. It is well known, however, the loss
region for the deeply trapped particles only describe the lower
1imit of the loss region. Much wider loss region has been known
for the barely trapped particles. In order to have the analytic

insight as well as to combine the analysis on the loss cone with

more complicated calculation such as the transport, an analytic



formula iIs still required for the loss cone.

In this artiele, we extend the previous analysisg} on the
loss cone to the more general case, and derive a simple analytiec
formula for the lcss region for the barely trapped particles.

The effect of the radial electric field and the role of the shift
cf the torcidal axis are studied. Effect of the nonuniform ExB
rotation is also discussed. We confirm that much larger inward
shift of axis is required to eliminate the loss cone from the
core plasma for barely trapped particles compared to the deeply
trapped particles. Upper limit of the ratio of the toroidal
ripple to the heliecal ripple is alse feound. This would impose
severer limit for the compatibility with the high MUD p-limit.
The minimum energy of particles to enter the loss cone is studied
in the presence of the radial electerie field. If the direction
of the field is inward, i.e., the ExB rotation eancels the v-B
drift of ions, the ion confinement is detereorated. The result
shows small difference from the previous calculation on the

deeply trapped particles.




$£2. Model of Loss Cone

£$2.1 Trajectory of the Guding Center of the Banana Orbit

We. study a toroidal helical configuration with 0=2. The
geometry of the configuration is shown in Fig.l. An example of
the particle orbit is shown in Fig.l projected on the poloidal
cross section. Toroidal coordinates (r,6,f) are used, where g
and 7 are poloidal and torecidal angles, respectively, R is the
major radius of the torus and a is the minor radius. The
deviation of the guiding center of the banana orbit from the
magnetie surface is much larger than the banana width itself. We
therefore study in this article the trajeetory of the guiding
center of the banana orbit in order to calculate the loss cone
boundary.

The motion of the guding center is predicted by the J-
invariance of the orbit. The J-invariance for the trapped

particle is defined as

<
11

1 ! (1)
> 3&12 £ ac ,

where vy is the velocity component parallel to the magnetic

field. We choose a model magnetic field as

B = Bo{l - st(r)cose - Eh(r,e)cos(2e—mc)} ’ (2)



where enpir,a) is given as

—

e {r,8) = eha[(r—Acose)2 + A%sin?e] . (3)

The quantities g¢{r) and gh{r,e) represent toroidal and helical
ripples, respectively. The model implies that the magnitude of
the helical ripple depends on the distance from the geometrical
center, from which the magnetic axis is shifted by the amount of
A.- If A is positive, the axis is shifted inward. We here
simply assume that the shift parameter A does not affect the
shape of Eﬁ nor the piasma minor radius a. I{ one applies the
following analysis to a real configuration, the relation between
the shift and parameters a and A must be employed in an explicit
form. We also assume that the static potential is constant on
the magnetic surface and is given as ¢(r).

The J-invariance is given as

_ 2 UBy = 2 s
J = ;n-R Y /E_h F(®), (4)
where
Fle?) = %{E(K)—(l—KZ)K(K)} (5)
and

., W - uBOfl—et(r)cos%—gh(r,e)} -.a¢
K? = — p (6)

2€huBO




where B is the magnetic field, m is the toroidal piteh, u 1s the
magnetic moment, W is the particle energy, M is the mass and q is
the echarge. The functions K and E stand for the complete
elliptic integrals of the first kind and the second kind,

respectively.

The equations {(4) and (6) yield two constant of motien,

i.e.,
J = Ve, Fk?) ()
and
W, 2_qy= _ g (8)
HBO 1 = (2« l)eh(r,a} Et(r)cose + EhuBO .

The guiding center motion has two invariances J and W/uB,.
By eliminating Kg from Egs.{(7) and (8), we have the integral of
motion for the trapped particles. The equation (7) and (8)
contain the elliptic integral and requires numerical solution.

One 1limit to allow the analytic treatment is g=0, i.e., the study

on the deeply trapped partieles. Taking the Taylor expansion of
the elliptic integrals, we here derive the approximate formula

for the barely trapped particles. The funetion F is expanded as

F(e2) = €211 + 2x? + g + eeve ). (9)

Taking the first order correction with respect to :2, Mynick

classifies the trapped particle orbits®?, Replacing F by KQ in

Eqs.(7) and (8), we have the constant of motion as



‘;;
U(r,8) = P (r,8)+ ¢ (ricose = 1 - uB‘TO , (10)

with

bo(,8) = [VE (£,8) - K2/, (£,,00) 1% —k4 &, (ry,8) —ﬁ%% , (11-1)

" _ {11-2)
wl(r) = Et(rJ,

and the electrostatic potential is given as

(12)
$(x) = ¢ E(x),

where f(r) satisfies that f(0)=0 and f(1)=1. The position (r, @)
of the particle whieh starts from (rl, 81, k1) satisfies the
relation Eq.{(10).

The integral provides the basis to calculate the loss cone
region. In the following subsections §2.2 and §2.3, we choose
the case of uniform ExB rotation (i.e., f is parabolie). The

case of nonuniform ExB rotation is discussed in §2.4.

§2.2 Region of the Loss Cone for Helically Trapped Particle

We calculate the loss region on the mid-plane for the
helically trapped partieles. The loss condition is defined suech
that the particles are assumed to be lost if r reaches a. The
plausibility of this choice of the loss boundary is diseussed in
§4.

The loss cone is determined by calculating the largest orbit




whiech does not aeross the boundary r=a. The largest contained
orbit which has the piteh angle parameter Klg on the mid-plane is

determined by
r=a (g=n) and k=k; (8=0) (139

if 3yg/ar>0 at r=a, i.e., the orbits shift inward as is shown in

Fig.2(a). In other case, the condition
r=a (§=0) and k=k; (8=r), (14)

determines the loss boundary, if ayg/ar<0 at r=a. In this case
the orbit shifts outward (i.e., the large ExB rotation reverses
the drift). In the following, we study the loss cone of ions by
choosing g=e. The results for electrons are obtained only by
changing the sign of e. This simplification is possible by
neglecting the banana width in comparison with the deviation of
the banana center from the magnetie surface.

The relations (10) and {(13) {(or {(14)) give the equation

which dictates the loss boundary. Eguation (7) can be written

as
F(e?) = 228 5 ?) (15)

and the constant of motion w(a’”’“)zw(rboundary’o’Kl) is reduced

to



e

9]
HBg (16)
e¢0 5

— 2 _ _Ay2_ _v
= (2Kl 1)eha(x A) st(a)x + UBO x°

2 oy 2
(2K wl)eha(l+A) +€t(a) +

where erboundary/a' "houndary 15 the minor radius, out of which
the loss cone exist in the phase space, and 2 is aA/a.
Taking the first order correction of K2 on F and replacing F

by ;2 in Eq.{7), we have

ed, {1+x+2(§-x)K§}(1+2ﬁ—x)—e(1+x)
= (175
“ha"Bo 1 - x?
for the loss boundary, where e=e¢{a)/ep,. Equation (17) shows

that the loss boundary rboundary is smallest for c1=1, i.e.,

barely trapped particles. For instance, Eg.(I7) reduces tg

2 _ 14+x £ {18)
k1 o%x=2k 1~ 193r—x !

in the absence of the electric potential. The value x is minimum

for :12=1 as

~ £ Ez ~
X = 1 + 2A+ > -/ +2{1+A)e . (19)

If the electric field is so strong that the ExB rotation
reverses the poloidal drift, Eq.{(14) determines the loss cone

boundary. With the same procedure, Eq.{(14) can be simplified as

ed, {l+x—2{§+x)Ki}(l—2ﬁ—x) + £ (1+x)
WB.,

= {20}
“hat®o 1 - x?

10




Combining Egs.(17) and (20), we have the loss region for the

barely trapped particles as

¢y < B oo (21)
and
ed oR 2
1 _ (I+2A-x)" _ _E , (22-1)
“ha*Po 1 - x2  TF
ety _ (1-28-x% , _= (22-2)
€hatBo 1 - x? 1-x
We compare the result with the case for deeply trapped
particles. Substituting g12= into Eqs.(17) and (20), we have

°y _ ., 2B _ ¢ (23-1)
EhaUBO 1-x 1-x

05 24 e (23-2)
eeam, ¢ T Ix T I-x
“na"o

for deeply trapped particles. Equation (22-1) shows that the loss
cone boundary is much wider, i.e., closer to the magnetic axis,

for the barely trapped particles. If the electric field is
strongly negative and the poloidal drift of ions is reversed,

then the loss region is wider for the deeply trapped particles.

2

This is because the yB-drift is larger for smaller values of

and the total poloidal drift remains smaller for given values of

11



particle energy and E,.

$2.3 Loss Boundary for Transition Particle

Equations (19) and (22-1) show that the barely trapped
particles are easily lost. We next study the loss ccne boundary
for the particles which experience the transition between
helically trapped and transit orbits. We introduce the peloidal

2

angle g4 at which g~=1 is satisfied; in the region ]9§<91, the

particle moves as a transit particle, and turns 1o be a trapped

one at g=g¢;. The loss boundary is determined by the relation

r=a {(g=r) and K1=I (8=81, rzrboundary) (24

if the orbits shift inward. Instead of Egs.{(15) and {18), we have

/%x—ﬁcos@lﬁ +Azsin26l

F(k?) = _ F(1) (25)
1 + A
and
ed
Pl 0
2 _ + 2 + + —— =
(2k*-=-1) (1+A) £ €ha“Bo
(26)
(x—Htcosé, ) 2+A%sin?%0., —excosh, + ——— |
1 i 1 EhauBO

This result shows that the reduction of the loss cone loss by
inward shift of the magnetiec axis is smaller for the transition

particles compared to helically trapped particles. For instance,




if we take ¢ = 0 for the simpliecity, we have

{/TXuﬁcosel)2+ﬁzsinzel -1 -41}2 - e(l+xcosb ) = 0. (27)

The loss boundary x is minimum for barely trapped particles, g12
=1 at 94=0, in the absence of the inward shift A. However, the
loss cene of the transition particles becomes important if the
inward shift of the axis increases. The effeet of the shift
becomes small for finite value of 9;, and disappears for gi=mr.

This means that the loss cone cannot be annihilated in the region
r/a > 1 - at(a)/gh(a) (283
even by the shift of the magnetic axis.

$2.4 Nonuniform ExB Rotation

IT the profile of f(r) differs from the parabolic one, the
loss cone condition is modified from those in §2.2 and §2.3. The
modification is considerable if the resonance condition awo/ar=0
is satisfied in the plasma. If the resonance condition is not
caused by the nonuniformity of ExB rotation, however, there
appears no qualitative change. The loss cone boundary is
cbtained only by replacing the term (1—x2) by (1-f(x)) in the

denominator of Eg.{(22) as

€0y (1428-x)2 - ¢ (29-1)

EhauBO l—f(x)

13



Sty (1-28-x)*+e
EhauBO l"f(X)

If, on the other hand, the resonance surface appears in the

plasma column so that the relation (neglecting A)

wo'(r) =0 at r=r {30)

holds, the orbit topology changes. We study the case of ¢'{0)>0
and ¢'{(a)<0 (prime denotes the derivative with respect to r). The
opposite case is given by straightforward extension. We define
the radius ro, by the relation y"{(ro)=0. If the toroidicity is

weak and the toroidal ripple is small, suech that

e, (@) < ¥y (r,) (32)

holds, then there appears a separatrix in constant y surfaces.
The width of the island in the constant ¢ surfaces is estimated

as

Et(rl)

— - {33)
|¢0"(rl)|

§r ~ 2

On the other hand, if the toroidal ripple is large, i.e.,
' 34
e (@) > gy (r,) (34)

the constant ¢ surfaces are nested and kidney bean shaped.

14



The loss cone region is calculated by using the
integral Eq.(10). Substituting r=a and §=0 into Eq.{(10), the loss
cone boundary is given as a funetion of gy for given funetional
form of f{r). Figure 3 shows the ioss cone region schematically
on the r-g plane for small and large g cases. In the weak ¢
case, where Eq.(32) holds, the topology of the loss cone regien
depends on the magnitude of g=gi(a)/ey,. When gr is smaller than
a-rg, the loss cone region is outside of the island, satisfying

the relation x » rs/a. If 6r becomes larger than a-r then the

S ¥

loss cone region penetrates into the core.

15



§3 Comparison with Numerical Calculation

The result is compared to numerical caleculation in order to
see the plausibility of the analytic formula.

Figures 4 and 5 show the loss boundary in r/a-pitech angle
plane and in r/a—¢0 plane, respectively. The model of Epy £1, A
and ¢ in numerical calculation is the same as for the analytic
calculation. Electrostatic potential profile is chosen as
parabolie, f{r)=(r/a)2. Figure 4 shows the Ky effecet on the loss
cone and Fig. 5 illustrates the effect of the radial electric

fleld. The solid line in Fig.4 is the analytic formula

W, (6=0)
i _ x(1+x) (1-x-g)
l1-x - (35)

€haUBO
in Fig. 5, analytic formula

e _lx 7 e (36)
ehauBO 1+x 1-x%

(minus and plus sign corresponds to solid and dashed lines,
respectively) are compared to numerical ealeulation. The open
circles indicate the result of the numerical caleulationlil’, The
small difference comes from partly because we only keep the first
order correction of :2 in Eq.(9) and partly because the finite
banana width in numerical ecalculation further reduces the
confined region. The error in evaluating x is less than 5% for
standard parameters. In order to illustrate that the barely

trapped particles are hardly confined compared to deeply trapped

18




partieles, we show the loss boundary for deeply trapped particles
in Fig. 5 by solid circles. The dashed line denotes the analytie
formula Eqg.{(23-1), which gives a better agreement. From this
result we see that the formula Eq.{(22-2) gives an upper bound for
the confined region.

The magnetic axis shift reduces the loss regionT_ll).
Figure 6 compares the loss boundary for analytic and numerical
calculations. The open cirecles are the result of numerical
caleulation!l? and solid curve is given from Eq.(22-1) with $=0.
The effect of the axis shift on the loss boundary, i.e.,
arboundary/aﬂs shows a good agreement between them. The boundary
for the deeply trapped particles is also shown in Fig.6 for the
comparison. The axis shift for the barely trapped particles 1is
as effective as for deeply trapped particles. However, the
annihilation of the loss cone is far difficult for the barely
trapped particles. The result for the transition particle 1is
shown in Fig.7. As A is small, the loss cone is largest for the
barely trapped particles. However, the minimum value of x is
given by the transition particles when A becomes large enough as
is shown by numerical computation. If one intends to annihilate
the loss cone within the region of a half radius, i.e.,

rboundary/a=1/2’ one must have

A ! _
A > /5 T 7T {barely trapped) {(37-1)
g — 16 e, =D
8(1-Ve)
{transition) (37-2)
g < % (elzn)



in stead of

{deeply trapped) {38)

(=53
v
M
|
| pt

When the direction of the eleetric field is inward, E.<0,
the confinement of ions depends on the ExB rotation. The
energetic particles are lost through the resonance of ExB
rotation and yB drift. The upper bound of the energy of confined
particles are given by Eg.{(22-2). This energy boundary is
important in determining the self-consistent electrie field in
the presence of the loss cone loss9), Figure 8 shows the 1loss
region in the r/a-pitch-angle space under the condition of
negative electriec field. The loss cone is widest for the deeply
trapped particles as is seen from Egs.(22-2) and (23-2). The
analysis on the self-consistent electric field by using the
formula of deeply trapped particles still provide a valid
estimation even if one includes the effect of the barely trapped

particles.

18




§4 Summary and Discussion

in this article, we derived an analytic formula of the loss
boundary in the real and phase spaces in the toroidal helical
systems. By using the J-invariance of the trapped particles, the
l1oss boundary for the deeply trapped particlies was studied. The
Taylor expansion of the function F permitted the analytic esti-
mation of the loss cone region. The formula was derived in the
limit of zero poloidal gyroradius. The effect of the radial
electric field and the shift of the magnetic axis were studied.
The effect of the nonuniferm ExB rotation is also investigated.
1t is confirmed that the annihilation of the loss cone from the
core plasma is far difficult compared to the deeply trapped
particles. The formula for the transition particle was also
derived. The loss cone of such particles is not so sensitive fo
the shift of the magnetic axis compared to deeply trapped
particles. The ratio gt(a)/gh(a) must be small encugh to reduce
the loss econe.

The analysis in this article is given in the 1imit of small
poloidal gyroradius. If one take intoc account the finite
poloidal gyroradius effeet, the loss boundary rboundary become
smaller by the amount of the order of the poloidal gyroradius.

The formula was compared to the numerical ecaleulations. The
difference of Thoundary normalized to a is less than 5% for
standard parameters. The simple formula will allow the analytic

insight for the parameter dependence of the loss boundary as well

18



as the rapid calculation for the more complicated calculations
such as the transport code analysis.

In order to keep the simplicity of the formula, only the
first order correction is taken into account. If one keeps
higher order correction, better estimates are obtained. The
second order correction gives (in case of A=0 for example)

edy 1

[ =X~ .7 - 2 (39)

€ MBy I+x 1-x 8 (1+x)
instead of Eq.(22-1) for the loss boundary. The symbol x in Fig.8
shows the result of Eq.{39) for the case of A=0. We see better
agreement, the accuraey of which is about 1%.

In studying the actual confining configurations, the form of
ep(r,8) is not always as simple as in this article. The inward
shift of the axis in experiments would cause changes in a and
higher harmonics of g+ Quantitative conelusion for the loss
cone boundary requires calceculations on the real geometry; This
kind of the analytic formula, however, is useful to understand
the trends which is observed in numerical computation and to
study more complex problems such as the determination of the
selfconsistent radial electrie field in the presence of the loss
cone.

We finally note the choice of the plasma boundary. The
larger choice of the limiter radius gives a wider confined
region, in principle. However, the minimum energy of the
confined particles only slightly depends on the choice of the

limiter boundary in the presence of negative electric field,




which sets the severe loss boundary. For instance, the minimum
energy of confinement at r=0 does not depend on the limiter
radius. It is also noted that the particles drifting close to
the surface are subject to strong Coulomb collision with cold

electfrons or to the charge exchange loss with neutral particles.

Owing to these reasons, we choose the plasma surface to determine

the loss ccne boundary.
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Figure Captions

Fig.1

Fig.3

(a) Geometry of the analysis. (b) Poloidal cross-
sections of the magnetie surface and mod-B surface at
(=0. (e) Example of the partiele orbit on the r-g

plane. The banana center has a circular movement.

Trajectory of banana center which determines the loss
eone boundary. Heliecally trapped particles (a) and

transition particies (b). The cuter eirele is given

by r=a. {(schematic drawing)

Orbit of banana center in the presence of the resonance
surface due to the nonuniform ExB rotation is shown
schematically. Cases of weak torsidieity, Eq.{(32), (a,
b) and strong toroidiecity, Eq.(34), {(e). Separatrix

width § is smaller than a-r. in (a), and is larger than

‘a-rg in (b). wo’(rs)=0 holds and ry 1s the radius of

the confined region. Shaded areas denote the loss

region.

The loss cone boundary for helically trapped particle.
L and C denotes the loss and confined regions,
respectively. Thick solid 1ine is the result of the
analytie formula, and the dashed line is the result of

the numelical computation. dashed-dotted l1ine indicate

]
wn



the boundary of helically trapped particle at p=0.

Parameters are Et(a)=0'11’ gh{a)=0.24, ¢0=0 and £=0.

The loss cone boundary for helically trapped particles
in the presence of the radial eleetric field. Solid
lines are the result of the barely trapped aprticles
(52=1 on the midplane), and dashed lines are for the
deeply trapped particles (;3=o cn the midplane).
Cireles denotes the result of numerical computation.
Parameters are the same as in Fig.3. For thin dashed line,
see Eg.(39).

Effect of the magnetic axis shift on the loss cone
boundary. Solid lines are for barely trapped particles
and dashed lines are deeply trapped aprticles.
Parameters are the same as In Fig.3. The simbol x
indicates the result with higher order correction,
Eq.{26). Open circles show the result of numerical

calculation.

Loss boundary of transition particles in the presence
of the magnetic axis shift (81=n and /2). Result of
barely trapped particle is alsc shown by dashed line.

Parameters are the same as in Fig.3.

Loss cone boundary in the presence of negative electric
field. Solid line denotes the result of the analysis

and the dashed line is given by the numerical



calculation. ¢0/W=0.4 and other parameters are the

same as in Fig.3.
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