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Abstract

Recently, kinetic calculation of the current diffusivity
(A) was made and it was commented that the fluid model of anoma-
lous tramsport, in which the self-sustained turbulence and L-mode
transport has been obtained [Itoh et al., Phys. Rev. Lett. 69
(1992) 10501, has overestimated A [Biglari, et al., Phys. Fluids
B5]. This comment was misled by the improper evaluation of the
wave number. The kinetic estimate of A is in the same order of
the one in the fluid model. This would be one of the reasons
that the transport theory, which was derived by using the fluid

equations, explains well the present experimental results,
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Recently a theory on the anomalous transport in toroidal
plasmas has been developedl'Z). The nonlinear destabilization
through the diffusion of the current was found to be the key for
the self-sustained turbulence. The solution of the rencrmalized
mode equation was obtained1_4), and the associated transport
coefficient was found tc be 1 = (A/x)/77§a3/2f(s)'laz/rgp, where
« 1s the parameter to denote the pressure gradient (a=q23’/a, £
is the inverse aspect ratio, 8 is the ratio of the plasma pres-
sure to the magnetic pressure, 8 =dg/d(r/a), ¢ is the safety
factor). u is the ion viscosity, A is the current diffusivity, and
X is the thermal conductivity, f(s) denotes the effect of shear,
a and R are plasma minor and major radius, respectively, and Tap
is the poloidal Alfvén transit time. This result shows the
important role of the current diffusivity, and the ratio A/X is
the crucial parameter. By renormalizing the reduced set of MHD
equations, the estimate A/% = (ﬁ/a)2 was obtained (6 is the
collisionless skin depth. See Ref.[4] for detailed derivation.)
This result was also confirmed by Comner by using the scale
invariance methodS). The result was applied to tokamaks, and a
good agreement was found between the theoretical prediction and
experimental resu1t4). The ratio A/X was obtained for the colli-
sionless plasma which is subject to the magnetic braiding, and a
similar value was obtained, although the ratio a/x has shown a
slight difference from the electrostatic estimateS). Since the
theory in [1-4] was developed on the basis of the fluid model,
the kinetic theory for the collisionless plasma is necessary 1in

order to fully explain the experimental results on tokamaks.




The kinetic estimate of the cross-field transport of the
eglectron current was obtained in Ref.[7], but the ratio a1/t was
not discussed in detail. Recently, Bigrali and Diamoad has
reported an analysis on the current diffusivity by performing
the quasi-linear analyéis on the drift kinetic equationg). By

introducing the real frequency of the mode, @y, it was found that
DyCkinetic)/Dy(fluid) = (up/wyq)® (1

where Dj is the diffusivity of the current in the mean field
Ohm’s law and e,, is the electron transit frequency kuVTe'
D(kinetic) is the result of the quasi-linear theory on the colli-
sionless limit and D(fluid) is our renormalized calculation. By
taking the estimate op = w,, (electron drift frequency,
KgPeVre/Lps Vpe is the electron thermal velocity, L, is the

density gradient scale length, p_, is the electron gyroradius, and

e

kB is the poloidal wave number) and kj ~ 1/R, i.e.,
“k/“te a (R/Ln)kape, (2)

it was claimed that mk/mte<<l and that our results overestimated
the current diffusivity.

The claim in Ref.[8], that we have overestimated the current
diffusivity, however, was misled by a careless estimation of
the ratio ep/oy,. No plausibility argument was made for the

estimates of ka and k" in [8]. The typical wave number



of the mode, which is destabilized by the nonlinear interactions,

was obtained asl %)

kg = (s)s la1/2, (3)

where h(s) denotes the dependence on the magnetic shear parameter
s=rq’ /q. The parallel wave number was also given as kﬁ =
g(s)/ak (g(s) also indicates the s-dependence). Therefore, the

ratio mk/mte for the relevant mode is given as
“k/mte Uy [h(S)/g(S)](qR/Ln)/ﬁ/E: (4)

Noting that the relation 62 = 2962/3 {the coefficient 2 comes

from the assumption Te=Ti) holds, we have
Co/w )2 v H(s)(aR/L )28/ e (5)

where H(s) is defined as [h(s)/g(s)]z/z. If we define the pressure-

gradient scale length Lp by the relation

8 /e = R/l ' (8)
Eq. (5) reduces to

(og/opo)? ~ B(sIRL, /L2, M

The right hand side of Eq.(7) is of the order unity for the



typical plasma profiles. TFor example, for the shear parameter of
s=1, the stability analysis gives h(s)~0.12 and 1/g(s)~l.6m,
yielding H(s)=0.2. In the case of the weaker shear, s=0.5, we
have h(s)~0.31 and 1/g(s)~1.2xr. i.e.. H(s)=0.7. In both cases,
the ansatz of Ref.[81, (mk/mte)2<<1, is disproved. Comtrary to
the conjecture of Reference [8]1, the ratio (mk/mte)2 is of order
unity for the mode which is relevant to the calculation., It
should be emphasized that the calculation in Ref.[8] coafirmed
that the expression of the current diffusivity, which we have
used in the transport theory, is close to the kimetic
counterpart.

The second claim was that we have ignored the off-diagonal
copponents of the transport matrix. This was because the off-
diagonal terms disappears when the the real frequency vanishes,
which was the case in Refs.[1-41. The fact, that the even- and
odd-parity modes are mixed, has been well known in the kinetic

9). The consistent solution

study on tearing mode or drift mode
of the real frequency and the transport coefficients is

necessary, and is left for future research.

In sumpary, contrary to what was claimed in Ref.[8], the
kinetic calculation of the current diffusivity gave the similar
value to what we have obtained in our study on the self-sustained
turbulence and anomalous transpori. This would be one of the
reasons that our resu1t1_4) explains very well the experimental
results in tokamaks, in which the plasmas are almost

collisionless.



¥e Lere notice the finite gyroradius effect. \Using the
estimate of kg, we have (kepi)z " (mi/Zme)h(s)z(Lp/qzﬁ}. In the
framework of the theory, this could be a small parameter, since
the theory was developed for the large-aspect-ratio limit, a/R-0

For the typical parameters, s=1, q=% and mi/me=1836. we have
(kgpi)? ~ 1.4L,/R (8)

This result shows that the assumption of the smpall gyroradius
correction is valid. However, in applying the theoretical result
to the experimental data. the parameter (kepi)z can become closer
to unity. The finite gyro-radius effect may reduce the growth
rate. On the other hand, it could reduce the ratio u/a and
enhance the thermal transport. The future research is required.
It should be noted that the mode which is described by
Egs. (8) and (8) is the most-strongly-driven mode, and is not
necessarily the mode of the largest amplitude. (Those with the
largest amplitude would be observed as 'dominant component’ in
experiments.) As was pointed out in literatures, the ExB
nonlinearity can cause the inverse cascade of the wave energy;
the long-wave-lergth mode can have larger amplitude compared to
the modes which are driven most strongly. (This nature was

confirmed by numerical sinulationlg).)
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