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Abstract. The rapid formation of a density pedestal on an L/H transition has been raising a question why the 
rapid density evolution is induced. Formation of a poloidal shock structure is predicted in H-mode transport 
barriers, and consideration of the two-dimensional structure both in the radial and poloidal directions is 
inevitable to clarify the formation mechanism of the H-mode pedestal. The analyses are carried out with edge 
plasmas in tokamak H modes, which are induced either spontaneously or by electrode biasing. 
Two-dimensional structures of the potential, density and flow velocity are calculated with the momentum 
conservation equation. The validity of the one-dimensional L/H transition theory and the iterative process to 
obtain the two-dimensional structure are confirmed by our analysis. A steep electric field structure both in the 
radial and poloidal directions is obtained. The two-dimensional electric field induces radial ion fluxes, which 
increase in the H-mode transport barrier and affect the electric field. If the Boltzmann relation is violated, 
radial electron fluxes are induced, and affect the density evolution. Reduction of anomalous transport by the 
steep gradient of the radial electric field, and generation of the particle fluxes associated with the 
two-dimensional structure influence the rapid formation of the steep gradients in H-mode plasmas. A transport 
model including both effects is constructed to reveal the self-consistent mechanism of the density pedestal 
formation in the L/H transition. 
 
1. Introduction 
 
Researches on tokamak high-confinement-mode (H-mode) [1] physics have been greatly 
developed [2], but there remain unresolved problems. One of the problems is the rapid 
formation mechanism of a density pedestal on a low to high confinement mode (L/H) 
transition [3]. Formation of a poloidal shock structure is predicted in the H-mode transport 
barrier [4,5], and existence of the poloidal electric field induces an E × B convective particle 
flux in the radial direction [2]. Therefore, consideration of the two-dimensional (2-D) 
structure both in the radial and poloidal directions is inevitable to clarify the formation 
mechanism of the H-mode pedestal. In this paper, 2-D electric field structures are studied by 
extending the one-dimensional (1-D) model in tokamak H modes. The analyses show that 
the poloidal electric field, formed in the H-mode transport barrier, generates convective 
particle fluxes, which is firstly calculated with consideration of the 2-D structural formation. 
A transport model including the 2-D effect is constructed to reveal the self-consistent 
mechanism of the density pedestal formation on the L/H transition. 
 
2. Model Equation 
 
The theoretical framework for describing bifurcation of the radial structure as well as 
poloidal inhomogeneity in tokamak edge plasmas is based on the momentum balance 
equation [6]. The flux-surface-averaged poloidal component of the momentum balance can 
be simplified to be 

shearbulk Γ+Γ=J ,       (1) 
where J is the radial current, Γbulk and Γshear are ion fluxes driven by neoclassical [7] and 
anomalous processes [2], respectively. Equation (1) can be written to be 
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where ε0 is the vacuum susceptibility, ε⊥ is the dielectric constant of a magnetized plasma, 
Jvisc, Jr and Jext are the current driven by anomalous shear viscosity of ions, neoclassical 
bulk viscosity, and external component as an electrode, orbit loss, etc., respectively [8]. 
Term Jvisc, Jr and the other terms come from Γshear, Γbulk and J in Eq. (1), respectively. The 
time evolution of the poloidal Mach number Mp, which is related to the radial electric field, 
is obtained from Eq. (2). 
The shock ordering ( ) ( )21

0ln εχ Onn ==  [5] can be used where ε is the inverse aspect 
ratio, because the large Mp case is considered as in H modes. The inverse aspect ratio ε is 
considered to be small. We assume that the radial flow velocity Vr is much smaller than the 
poloidal flow velocity Vp. By these ordering and assumption, the equation that determines 
the poloidally-symmetric part of the electric field, Eq. (2), is decoupled with that governs 
the poloidally-asymmetric part χ(r, θ). The parallel component of the momentum balance 
gives the equation for χ with given Mp to be 
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where ( )rti0p v CnKBM = , pp BnVK = , pp tt=τ , ( )rtip0p v CBrBt = , iiti 2v mT= , 
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rti0ps v34 CnKBID π= , B0 is 
the toroidal magnetic field at the magnetic axis, Bp is the poloidal magnetic field, n = ni = ne 
is the density, mi is the ion mass, µ is the shear viscosity coefficient, and Ti and Te is the 
temperature of ion and electron, respectively. τp is the time normalized by tp, which is of the 
order of the duration for which the particle with the thermal velocity completes one poloidal 
rotation, so the time scale of 2-D structural formation is given by this poloidal transit time tp. 
The form of Ips is represented in Eq. (10) of Ref. [5], and depends on Mp and the collision 
frequency [9].  
Time evolution of the 2-D structure is calculated from Eq. (3) by substituting Mp obtained 
by Eq. (2). Then, using Boltzmann relation 

i

exp
T

enn ∆Φ
= ,        (4) 

χ is directly related to the potential perturbation, and the potential profile is obtained, where 
f  and ∆f represent the spatial average and perturbed parts of quantity f, respectively. This 

iterative process is appropriate, because a condition Vr / Vp << 1 is satisfied, even if a strong 
poloidal shock exists [6]. 
 
3. Two-dimensional Electric Field Structure 
 
This section provides the electric field structures obtained from the 2-D model in Sec. 2. 
The analyses are carried out with edge plasmas in tokamak H modes, which are induced 
either spontaneously or by electrode biasing, to show the 2-D steep structural formation. 
 
3.1. Geometry 
 
Analyses are carried out in the region near the plasma edge, r = (a - d) ~ a, where r = a is 
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the position of the last closed flux surface, and d is the width of the region (between the 
surfaces S1 and S2 in Fig. 1). For studying the impact of a biasing-limiter, the externally 
applied voltage Vext is imposed between the surfaces S1 and S2 connected by an external
circuit with resistance r̂ . On the other hand, 
there is no external circuit for spontaneously 
obtained H modes, which is induced by 
large gradients of the density and 
temperature. We choose the boundary 
condition to be χ = 0 at r = (a - d) and a. 
This is an idealization, considering that no 
perturbation exists outside of this region 
(such as in the edge barrier or biased region). 
The boundary condition for Mp is set to be 

0p =∂∂ rM  at r = (a - d) and a. The 
following parameter set is used for the 
calculation in this paper: R = 1.75 [m], a = 
0.46 [m], B0= 2.35 [T], Ti = 40 [eV], Ip = 
200 [kA] and d = 5 [cm]. 

R

d a

S1 S2

 
FIG. 1. Schematic of the edge plasma 
(poloidal cross section). The analyses are 
carried out in the region between the surface 
S1 and S2. 

 
3.2. H mode Induced by Externally Applied Voltage 
 
The first example of the calculation is given for the electrode-biasing H mode. Nonlinear 
formation mechanisms of the steep radial electric field structure have been studied by biased 
limiter experiments in which an externally driven H-mode transition was induced [10,11]. 
Imposing a radial electric field by an electrode inserted into a plasma gives a transition to an 
improved confinement state when the applied voltage between the electrode and the limiter 
is larger than a threshold value. This transition is characterized by a sudden change of the 
radial electric field structure from a flat one to a peaked one (solitary structure) [8,12]. A 
steep electric field structure both in the radial and poloidal directions is obtained by using a 
plasma parameter set in the electrode-biasing H mode. Potential profiles in the radial 
direction are represented in Fig. 2, where the solutions of the 1-D (flux-surface averaged) 
[8] and 2-D model are shown. The steep radial gradients show almost the same feature, so 
the 1-D model can represent the characteristic radial structure in the H mode. In 
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FIG. 2. Radial profiles of the potential at θ = 
0 in the electrode-biasing H mode (Solutions 
of the 1-D and 2-D model). 
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FIG. 3. Poloidal profile of the poloidal 
electric field at r - a = -3 [cm] in 
electrode-biasing H mode. The poloidal 
shock structure is formed at θ ~ 0.5π. 



TH/P6-17 4 

addition, there exists a poloidal structure. Figure 3 shows a poloidal electric field profile. A 
steep gradient in the poloidal direction (poloidal shock) exists at θ ~ 0.5π. The position of 
the shock structure depends on the magnitude of the poloidal Mach number, and appears at 
θ = 0 when Mp = 1 [5]. This poloidal inhomogeneity induces an E × B convective particle 
flux in the radial direction as will be discussed in Sec. 5. 
 
3.3. Spontaneous H Mode 
 
The analysis is also performed for the case of the spontaneous H mode driven by ion-orbit 
losses [13,14]. The radial electric field often has the negative sign in the spontaneous H 
modes, and the solitary structure is not accessible [8]. The origin of the bifurcation in our 
model is nonlinearity of the bulk-ion-viscosity term and the ion-orbit-loss term. These terms 
have nonlinear responses to the radial electric field, and a large density gradient, which 
induces a large ambipolar electric field, can give a large radial electric field. With a 
prescribed inhomogeneous density profile as shown in Fig. 4 (a), normal and enhanced 
radial electric field branches are taken in the small and large gradient regions (near the 

(c) 

 

FIG. 4. (a) Radial profiles of the density (n) normalized by the density at r = a (na), and the 
reciprocal of the density scale length. (b) Radial profiles of the radial electric field at θ = 0 
(Solutions of the 1-D and 2-D model), and (c) 2-D structure of the potential perturbation in 
the spontaneous H mode. 
 
boundary r - a = -5, 0 [cm]), respectively, 
and a critical layer is formed between these 
regions (at r - a ~ -1 [cm]). The steep 
gradient of the radial electric field is formed 
in this layer. The width of the layer depends 
on the shear viscosity coefficient [2]. The 
radial electric field profiles in the radial 
direction are shown in Fig. 4 (b) by solving 
the 1-D and 2-D model. The 2-D structure of 
the potential perturbation is shown in Fig. 4 
(c). There exists a poloidal structure in the 
same way with the electrode biasing case. 
Figure 5 shows the poloidal electric field 
profile. The poloidal shock structure exists 
at θ ~ 0.2π - 0.5π in this case. 

-140

-70

0

70

0 1 2
θ / π

E p
 [V

/m
]

(r  - a  = -2cm)

 
FIG. 5. Poloidal profile of the poloidal 
electric field at r - a = -2 [cm] in 
spontaneous H mode. The poloidal shock 
structure is formed at θ ~ 0.2π - 0.5 π. 
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4. Self-consistent Transport Model Including the Two-dimensional Effect 
 
As shown in the previous section, a 2-D electric field is formed in the H-mode transport 
barriers induced both spontaneously and by electrode biasing in the plasma edge region. The 
poloidal electric field generates an E × B convective flow in the radial direction, so the 
flux-surface-averaged radial flux is calculated to estimate its effect on particle transport. 
The E × B drifts of ions and electrons direct to the same direction, depending on the sign of 
the radial electric field, the toroidal magnetic field and the plasma current [9]. Adding the 
diamagnetic flow with electrons which satisfied the Boltzmann relation on the same flux 
surface, the electron radial flux is canceled to be zero. On the other hand, the ion radial flux 
is generated, and its particle velocity is more than 1 [m/s] in the transport barrier region. 
This radial ion flux affects the radial electric field by contributing to the radial current in Eq. 
(1) to be 
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where Jp is the additional current arising from the 2-D effect, and 〈〉 denotes the flux surface 
average. 
The radial electron flux is zero with the Boltzmann relation, so it does not affect directly to 
the density pedestal formation as described in Ref. [9]. If there is a mechanism to violate the 
Boltzmann relation of electrons, such as electron-ion collisions, the 2-D structure 
contributes to the radial electron flux. Here, we introduce this 2-D effect deductively by 
using the phase delay δ between the potential and the density to be 

( )[ ]δi
B

nEp −−=Γ exp1e .       (7) 

The phase delay δ is taken as a prescribed parameter in this paper, and the estimation of this 
value will be carried out in a future work. 
Taking into consideration of the ion and electron radial fluxes, the transport model including 
the 2-D effect is explained. The structure of the transport model is described in Fig. 6. There 
are two kinds of driving force; one is the external drive Vext, which is the imposed biasing 
voltage taken as a control parameter in the case of the electrode-biasing H mode, and the 
other is the internal drive α, which is the temperature gradient taken as a control parameter 
in the case of the spontaneous H mode. The internal drive is modeled in the ambipolar 
electric field Xa as 
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where ρp is the poloidal Larmor radius. A control of these driving parameters changes the 
radial electric field, which is obtained by solving Eq. (5), and an L/H transition is taken 
place. The large radial electric field forms a 2-D electric field, which is obtained by solving 
Eq. (3) with the substitution of Mp. Then, particle fluxes Γi and Γe are induced. The ion flux 
Γi contributes to the radial current in Eq. (5) and the electron flux Γe given by Eq. (7) 
contributes to the convective component in the continuity equation written as 

( ) SnDnV
t
n

a +∇−−∇=
∂
∂

,       (9) 

where V, Da and S are the flow velocity, diffusion coefficient and particle source, 
respectively. The density profile is reflected into the ambipolar electric field Xa (Eq. (8)). In 
this way, a self-consistent loop is closed in our transport model. 
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FIG. 6. Structure of the transport code including the 2-D electric field effect. 

 
5. Time Evolution on the L/H Transition 
 
Using the model including the 2-D effect, a self-consistent density evolution in an L/H 
transition is calculated. Figure 7 shows time evolutions of the poloidal Mach number, which 
corresponds to the radial electric field, and the density, when α is ramped up at t = 0 from 
0.0 to -0.45 in the duration of 100 µs. This is the case with δ = 0. The diffusion coefficient 
Da is modeled to be reduced from 1.0 [m2/s] to 0.2 [m2/s] at t = 0 corresponding to the 
suppression of anomalous transport. The negative radial electric field changes its profile 
from a flat one (L mode) to that larger near the last closed flux surface (H mode). The radial 
profile of the H-mode state is similar to that shown in Fig. 4. The 2-D electric field changes 
in accordance with the evolution of Mp, and the large poloidal electric field generates an E × 
B flow pointing to the radial direction. Figure 8 shows the flux-surface-averaged convective 
velocity of the E × B flow. The radial profiles of the convective velocity in the steady L- and 
H-mode states are shown. The convective velocity is inhomogeneous in radius, and 
increases in accordance with the increase of Mp. The final state has the maximum value of 
〈VE×B〉 = 7 [m/s]. This flux affects the electric field by generating the radial current Jp. In the 
spontaneous L/H transition, the current Jp has the same order of magnitude of the bulk 
viscosity current and the orbit loss current, so it must be taken account for obtaining a 
threshold of the L/H transition. Note that, in the electrode biasing case, Jr is much larger 
than Jp, (Jp / Jr = 0.1 in the L mode and 0.3 in the H mode in the positive biasing case in Fig. 
2), so the effect on the magnitude of the radial electric field is smaller than that in the 
spontaneous transition. 
The electron radial flux arising from the 2-D effect is discussed next. The direction of the 
convection depends on the direction of the radial electric field, the toroidal magnetic field 
and the plasma current. In the spontaneous H mode with a negative radial electric field, 

 

 
FIG. 7. Time evolution of (a) the radial 
electric field at r - a = 2.5 [cm] and (b) the 
density at r - a = 5 [cm] on the L/H 
transition with δ = 0. 
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FIG. 8. Radial profiles of the flux-surface- 
averaged particle flux driven by the poloidal 
electric field in the cases of the L and H 
mode in Fig. 7.
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FIG. 9. (a) Radial profiles of the poloidal 
Mach number and (b) the density in the H 
mode. The cases with δ = 0 and 0.5 are 
shown. The density profile in the L mode is 
also indicated by the dashed curve. 
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FIG. 10. Time evolution of (a) the density 
increase at r - a = -5 [cm] and (b) the 
poloidal Mach number at r - a = -2.5 [cm] 
after the α ramp up. The cases with δ = 0 
and 0.5 are shown. 

 
when the toroidal magnetic field and the plasma current point to the same directions, the 
convective velocity directs outward. With the existence of the phase delay between the 
potential and the density, the radial electron flux is not zero and can affect the formation of 
the density pedestal. Figure 9 shows the profiles of the poloidal Mach number and the 
density with δ = 0 and 0.5. The value δ = 0.5 is chosen as a representative for a small but 
finite value of δ. The conditions are same with the steady state in Fig. 7 except for the value 
of δ. There is little difference in the Mp profiles with different δ (less than few %, between 
the cases with δ = 0 and 0.5). This is consistent with the procedure when Mp and χ are 
solved in the limit with δ = 0.The boundary conditions of the density are set to be constant 
particle flux at r - a = -5 (inner boundary) and constant density at r - a = 0 (outer boundary). 
With these boundary conditions, the density decreases with larger δ (large convective 
particle flux) as shown in Fig. 9 (b). In the present case, the formation of the transport 
barrier is dominated by the reduction of diffusivity. 
 
6. Summary and Discussion 
 
We have been constructing a transport model including the effect of the 2-D structure to 
reveal the self-consistent mechanism of the density pedestal formation in an L/H transition. 
The electric field structure has steep gradients both in the radial and poloidal directions, 
which was obtained by solving the model equation including the poloidal structural 
formation with that giving the time evolution of the radial electric field. The analyses were 
carried out on L/H transitions induced either spontaneously or by externally forced biasing. 
The calculation confirms the existence of the 2-D steep structure in the H-mode transport 
barrier. The 2-D structure affects the density profile by inducing ion and electron fluxes in 
the radial direction. The ion flux is associated with the radial current to modify the radial 
electric field, especially in the spontaneous H mode. The electron E × B flow is cancelled by 
the diamagnetic flow with Boltzmann electrons, but if there is a phase delay between the 
potential and density, it can contribute to the formation of the density profile. 
In this study, we found that the effect of the 2-D electric field structure does not change the 
quantitative understanding of the H-mode transition, which has been established by 
focusing on the 1-D steep gradient of the radial electric field. The quantitative difference 
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appears in the width of the barrier. The 2-D effect makes the layer of the steep electric field 
narrower, enhancing the stabilization of micro-turbulence. Next, for the steep density 
pedestal formation in H-mode transport barriers, two components must be highlighted. One 
is the reduction of turbulent diffusivity by the steep gradient of the radial electric field, and 
the other is the increase of the convective fluxes by the formation of the 2-D electric field. 
The former mechanism has been mainly studied to clarify radial structures in H modes, but 
this reduced diffusion gives a transition taking much longer time to reach a steady state than 
observed on the onset of the L/H transition. The generation of a particle pinch associated 
with the poloidal shock structure can give a rapid density increase if the phase difference δ 
is substantial. The time constant of the Mp evolution is less than 1 [ms], as shown in Fig. 7, 
which is characterized by the poloidal transit time tp. The time constant of the density 
evolution is ~ 10 ms, which is characterized by the diffusion term in Eq. (9), but the 
convection, which evolves with the time scale of the electric field, is large enough to affect 
particle transport in the ramping up phase t = 0 - 0.2 [ms] with δ in the range of 0.5. Figure 
10 shows the time evolution of the amount of the density increase ∆n0(t) = n0(t) - n0(0) 
normalized by that in the final state ∆nH, where n0 is the density at r - a = 5 [cm] (the inner 
boundary position). The difference in the time evolution of Mp is small, but ramping up 
speed of ∆n0(t) / ∆nH is 1.1 times larger in the case with δ = 0.5 than that with δ = 0. 
Existence of the 2-D structure can accelerate the density evolution. Thus, this convective 
particle flux is a new candidate for the cause of the rapid establishment of the density 
pedestal after the onset of the L/H transition. 
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